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VI. Conclusions

• Basin modes dominate the variability of the basin interior.

• These basin modes resonate and are forced by instabilities of the western boundary current.

• In the basin interior, basin modes, not vortices or mean-mean interaction dominates the non-
linearity.

• Calculating the nonlinear interaction of analytic basin modes with the variances from EOFs
gives good agreement for deviations from Sverdrup (1947) interior flow.

a) The time-mean streamfunction minus
the Sverdrup (1947) interior solution for
the Reb= 0.25, Rei= 5 calculation reveals
a counter-rotating and co-rotating gyre
pattern irreconcilable with a local down-
gradient absolute vorticity flux. b) The
prediction using basin modes (1,1), (1,2),
(2,1), and (2,2) with variances from EOF
diagnosis.

a) The time-mean streamfunction in
a elongated basin with Reb=3, Rei=3.
There is wind forcing only in the western
half of the basin. b) The prediction with
analytic basin modes (3,1), (2,1), (1,2),
(1,1), and (2,2) with variances from EOF
diagnosis.

V. Confirmation of Theory
The variances of a few basin modes are deduced from the EOFs of a model calculation. The
nonlinear interaction of theanalytic basin modes produces good agreement with the interior
solution, including the counter-rotating regions.

Counter-rotating gyres in other models have been attributed to Fofonoff (1954) gyres (predicted
by inviscid statistical mechanics Griffa and Castellari, 1991;Özg̈okmen and Chassignet, 1998),
mixing of absolute vorticity (Greatbatch and Nadiga, 1999), and nonlinear dispersion (Holm and
Nadiga, 2003). However, the Fofonoff (1954) primary is mean vorticity advection andβ-term;
some regions would require ’up-gradient’ absolute vorticity fluxes; and the gyres have a sensitive
dependence on the frequency of the boundary current instabilities not captured by the dispersion
model.

In summary,

• EOFs strongly resemble spatial structure of basin mode standing waves with two EOFs per
basin mode.

• PSDs of EOF presence have peaks at basin mode frequencies.

• Vorticity EOFs reveal that most variance in in boundary current region, but frequency matches
that of the resonating modes.

• Thus, there are basin modes forced by boundary current instabilities.

• The counter-rotating gyres occur on the eastern side, where basin modes are the most important
variability, and their vorticity balance depends critically on eddy flux divergences.

IV. Theory
Consider a grossly simplified model, replacing Laplacian friction with bottom drag and repre-
senting the boundary mode instabilities as an additional forcing.

∂∇2ψ

∂t
+
∂ψ

∂x
+ δ2

IJ(ψ,∇2ψ) + δS∇2ψ = − sin(πy) + Af sin(nfπy) cos(ωf t)e
−x/δf . (5)

Consider the weakly nonlinear perturbation series:ψ = ψ0 + εψ1 + . . . under the assumption that
δI � 1. Theψ0 equation is linear, so it is uncoupled into a steady equation (similar to Stommel
(1948)) and a time-dependent equation (similar to Pedlosky, 1965). By differentiating the linear
solutions, the first nonlinear correction can be calculated. If the periodic forcing is resonant with
a basin mode, then the results are to lowest order inδS:

δ2
IJ(ψ0,∇2ψ0) ≈ 1

2π
3δSδ

2
I sin(2πy), (6)

δ2
IJ(ψ′0,∇2ψ′0) ≈ 2m3nfπ

4ω4
f |ϕ0|2δ2

I

δ2
S

sin(2mπx) sin(2nfπy)

(
1− 2(−1)me

− 1
δf cos

(
1

2ωf

)
+ e
− 2
δf

)
.

The resulting mean vorticity flux convergence is very large within the western boundary current
butO(δSδ

2
I) outside it. On the other hand, the eddy term isO(|ϕ0|2δ2

I/δ
2
S) outside of the forcing

region. The analytic eddy flux divergence gives approximate nonlinear interaction outside of the
boundary current region, resulting in a correction to Sverdrup flow.

ψ0 + ψ1 = (1− x) sin(πy) +

∫ x

1
δ2
IJ(ψ′0,∇2ψ′0)dx. (7)

Although the strength of each basin mode depends in a complicated way on the boundary current
instabilities, the eddy interaction as a function of the average variance of the basin mode, which
we can deduce from the EOFs.

δ2
IJ(ψ′0,∇2ψ′0) ≈ 4π4mnf (m2 + n2

f )δ2
I sin(2mπx) sin(2nfπy)

∫ 1

0

∫ 1

0
(ψ′0)2dxdy, (8)

(a) and (b) show the meridional and zonal
averages, respectively, of terms in (5) in
the region where ψ < 0 (the counter-
rotating gyre) from the Rei=Reb=3 elon-
gated basin calculation with wind only in
the western half of the basin.

(a) and (b) show the meridional and zonal
averages, respectively, of vorticity flux con-
vergences in the region where ψ < 0 (the
counter-rotating gyre) from the Reb=0.25,
Rei=5 calculation.

III.b. Resonating Basin Modes
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The ψ EOFs and PSDs of EOF presence
for a Reb=0.25, Rei=5 calculation.
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The ζ EOFs and PSDs of EOF presence
for a Reb=0.25, Rei=5 calculation.
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The ψ EOFs and PSDs of EOF presence
for a Reb=1, Rei=1 calculation in an elon-
gated basin.

III.a. Counter-Rotating Gyres

The enhanced viscosity near the boundary al-
lows for much higher interior Reynolds number
without inertial domination (Fox-Kemper and
Pedlosky, 2003).

The time-mean streamfunction for a num-
ber of parameter settings shows regions
rotating counter to the wind stress.

III. Results

I. Abstract
Relatively high Reynolds number calculations of a barotropic ocean model reveal counter-
rotating gyres on the eastern side of the basin. These unintuitive regions rotate in a direction
opposite to the wind forcing direction, and are sometimes associated with strong up-gradient vor-
ticity fluxes. An analysis of the empirical orthogonal functions of some numerical calculations
reveals that much of the variance is in oscillations resembling basin modes. A simple non-local
model of the nonlinear interaction of forced-dissipative basin modes, together with the observed
variance of each mode in the numerical calculation, gives excellent agreement with the stream-
function and dynamical balances of the counter-rotating gyres.

(Fox-Kemper, 2003)

II. Model
The model results presented here are from a 257x257 Chebyshev polynomial pseudo-spectral
numerical barotropic model in a rectangular basin with spatially-variable viscosity to roughly
parameterize boundary physics not directly represented in the model. The nondimensional equa-
tions governing the model are:

∂ζ
∂t +∇ · (x̂ψ + δ2

Iuζ − δ
3
M∇ζ + δS∇ψ) = − sin(πy), (1)

ζ = ∇2ψ, (2)

δ3
M =

δ3
I

Rei
+
(
δ3
I

Reb
− δ3

I
Rei

)(
e−x/δd + e−(1−x)/δd

)
, (3)

δd ≡ δI√
Rei
, (4)

where ψ (streamfunction) and ζ (relative vorticity) are determined during integration. Boundary
conditions are slip (ζ=0) on the ’fluid’ boundaries and no-slip (∂ψ∂x = 0) on the ’solid’ boundaries,
as well as impermeability on all boundaries (ψ = 0). The basin domain is y between 0 and 1 and
x between 0 and xe. The other parameters are δI (Charney, 1955, inertial boundary layer width),
δS (Stommel, 1948, frictional boundary layer width), and Rei and Reb are Reynolds numbers for
the interior and boundary viscosity (Munk, 1950). Throughout, δI is 0.02 and δS is 0, while Rei
and Reb vary.
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