Fall 2019, GEOL2300- Homework 4

1. Tensors

1.1 Tensor manipulations

Use Einstein notation convention and derive the following identities using the Levi-Civitta tensor $\varepsilon_{i j k}=\left\{\begin{array}{c}0 \text { if repeated indices } \\ +1 \text { if } i, j, k \text { is an even permutation of } 1,2,3 . \\ -1 \text { if it is an odd permutation of 1,2,3 }\end{array}\right.$

- $\nabla \cdot(\nabla \times v)=\varepsilon_{i j k} \frac{\boldsymbol{\partial}}{\partial x^{i}} \frac{\partial}{\partial x^{j}} v_{k}=0$
- $\nabla \times \nabla f=0$

2.1 Covariant description of the velocity vector in spherical coordinates

Let's define the velocity vector in Cartesian coordinates $\mathbf{x}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ as $\boldsymbol{v}=(\dot{x}, \dot{y}, \dot{z})$, then consider a spherical coordinate system $\mathbf{x}^{\prime}=(r, \theta, \phi)$

- Write down the functional forms of the mapping of (x, y, z) to (r, θ, ϕ)
- Derive the covariant version of the velocity vector in spherical coordinates using that $v_{j}^{\prime}=\frac{\partial x^{i}}{\partial x^{\prime j}} v_{i}$, where summation is implied and primes refer to the spherical coordinate system.
- In terms of units, how does the covariant form of the velocity vector in spherical coordinates looks like? Any surprises?
- Note: the pseudo-vector for the velocity in spherical coordinates $\boldsymbol{v}^{\prime}=(\dot{r}, r \dot{\theta}, r \sin \theta \dot{\phi})$ does not transform like a tensor (either covariant or contravariant), it is therefore a poor description of the velocity field if one strives for physical invariance among coordinate systems!

3.1 Tensorial invariance of Darcy's law

Darcy's law is an empirical law that describe the volumetric flux of fluids through a porous medium, here considering only pressure gradient (neglecting gravity here for simplicity). It is stated in the following way $\mathbf{v}=-\mathrm{K} \nabla p$, where K is a second-rank tensor that is the ratio of the permeability tensor and the fluid shear viscosity (scalar here).

Note: If \mathbf{x} and \mathbf{x}^{\prime} are two coordinate systems and $\mathbf{v}, \mathbf{v}^{\prime}$ the respective volumetric flux in these systems, show using the rule above (2.1) for vectors, that mixed second-rank tensors transform like
$\mathrm{K}_{n}^{\prime m}=\frac{\partial x^{i}}{\partial x^{\prime n}} \frac{\partial x^{\prime m}}{\partial x^{j}} \mathrm{~K}_{i}^{j}$ and finally the general rule between two coordinate systems that

$$
\frac{\partial x^{i}}{\partial x^{\prime m}} \frac{\partial x^{\prime m}}{\partial x^{j}}=\delta_{j}^{i}=\frac{\partial x^{m}}{\partial x^{\prime j}} \frac{\partial x^{\prime i}}{\partial x^{m}}
$$

- Show that Darcy's law is a proper tensorial law (invariant with change in coordinate system, i.e. $\mathbf{v}^{\prime}=-K^{\prime} \nabla^{\prime} p$

