Fall 2019, GEOL2300- Homework 4

1. Tensors

1.1 Tensor manipulations

Use Einstein notation convention and derive the following identities using the Levi-Civitta tensor

 $\varepsilon_{ijk} = \begin{cases} 0 \text{ if repeated indices} \\ +1 \text{ if } i, j, k \text{ is an even permutation of 1,2,3.} \\ -1 \text{ if it is an odd permutation of 1,2,3} \end{cases}$

•
$$\nabla \cdot (\nabla \times \boldsymbol{v}) = \varepsilon_{ijk} \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j} v_k = 0$$

• $\nabla \times \nabla f = 0$

2.1 Covariant description of the velocity vector in spherical coordinates

Let's define the velocity vector in Cartesian coordinates $\mathbf{x}=(x,y,z)$ as $\boldsymbol{v}=(\dot{x},\dot{y},\dot{z})$, then consider a spherical coordinate system $\mathbf{x}'=(\mathbf{r},\theta,\phi)$

- Write down the functional forms of the mapping of (x,y,z) to (r,θ,ϕ)
- Derive the covariant version of the velocity vector in spherical coordinates using that $v'_j = \frac{\partial x^i}{\partial x'^j} v_i$, where summation is implied and primes refer to the spherical coordinate system.
- In terms of units, how does the covariant form of the velocity vector in spherical coordinates looks like? Any surprises?
- Note: the pseudo-vector for the velocity in spherical coordinates $v' = (\dot{r}, r\dot{\theta}, r \sin \theta \dot{\phi})$ does not transform like a tensor (either covariant or contravariant), it is therefore a poor description of the velocity field if one strives for physical invariance among coordinate systems !

3.1 Tensorial invariance of Darcy's law

Darcy's law is an empirical law that describe the volumetric flux of fluids through a porous medium, here considering only pressure gradient (neglecting gravity here for simplicity). It is stated in the following way $\mathbf{v} = -K \nabla p$, where K is a second-rank tensor that is the ratio of the permeability tensor and the fluid shear viscosity (scalar here).

Note: If **x** and **x**' are two coordinate systems and **v**, **v**' the respective volumetric flux in these systems, show using the rule above (2.1) for vectors, that mixed second-rank tensors transform like

 $K_n^{\prime m} = \frac{\partial x^i}{\partial x^{\prime n}} \frac{\partial x^{\prime m}}{\partial x^j} K_i^j \text{ and finally the general rule between two coordinate systems that}$ $\frac{\partial x^i}{\partial x^{\prime m}} \frac{\partial x^{\prime m}}{\partial x^j} = \delta_j^i = \frac{\partial x^m}{\partial x^{\prime j}} \frac{\partial x^{\prime i}}{\partial x^m}$

Show that Darcy's law is a proper tensorial law (invariant with change in coordinate system, i.e. v' = −K' ∇'p