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Abstract4

Characterizing sea surface temperature (SST) variability is a critical aspect of studying long-term changes
in estuarine environments. However, the scales of estuarine variability and change can be quite small (10
m-10 km). In this study, we present the first combined analysis of an estuary using the 39-year-long SST
evolution from the multi-satellite Landsat data (∼ 18 day average sampling), over a decade of in-situ
buoy records (15 min. sampling), and tide gauges (60 min. sampling). We retrieved the seasonal-to-
decadal sea surface and tidal temperature variabilities and trends over four decades in Narragansett Bay
and its arm, Mt. Hope Bay. The seasonal solar heating, river run-off, and resulting salinity stratification,
and bathymetry determine the dominant (∼ 80%) temperature variance in the bay. The warming trend
of the annual mean SST is 0.057 ± 0.024 ◦Cyr−1 for Narragansett Bay and 0.015 ± 0.018 ◦Cyr−1 for
Mt. Hope Bay. We classified each Landsat image by tidal phase using tide gauge measurements in order
to produce composite SST anomaly maps corresponding to each tidal phase, but non-tidal noise made
the signal trustworthy in only a few regions. High-frequency measurements reveal that tidal temperature
changes are detectable and consistent at buoy sites but secondary to the temperature changes by season
in the bay. The shallower, fresher upper bay shows greater SST variability than the lower bay, whose
temperature approaches the more oceanic, less seasonal temperatures at the mouth. Importantly, our
study represents the synergistic advantages of utilizing Landsat and in-situ buoy data to offer new and
deeper insights into the changing conditions of global estuaries.
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1. Introduction6

Sea surface temperature (SST) is a primary indicator of biogeochemical and physical processes within7

an estuary (Oviatt et al., 2002; Hu et al., 2020; Wang et al., 2021; Rubinetti et al., 2022). SST influences8

the metabolism and productivity of estuarine marine life; rising SSTs are understood to contribute to9

global-scale eutrophication (Li et al., 2021; Xu et al., 2022). Particularly in shallow estuaries, seasonal10

changes in SST modulate the water chemistry, nutrient transport, and the movement of pollutants11

(McLusky et al., 1986; Leal Filho et al., 2022). Shallow estuaries can also exhibit extreme temperature12

fluctuations between seasons (Fisher and Mustard, 2004; Oczkowski et al., 2015). Abrupt shifts in water13

temperature can significantly harm critical life cycle events (e.g., larval development, spawning, plankton14

bloom) of aquatic organisms (Paxton et al., 2016; Priyanka et al., 2021). SST variability can affect local-15

atmosphere and ocean dynamics (McGrath et al., 2008; Pourkerman et al., 2023). Elevated SSTs lead16

to higher evaporation rates, enhanced local humidity and precipitation, and can give rise to low-level17

cloud formation (Guo et al., 2022). Multiple factors can contribute to changes in estuarine water surface18

temperature, including impervious surface runoff (Barlage et al., 2002), climate change (Kennedy, 1990;19

Brown et al., 2016), complex bathymetry (Simionato et al., 2010; Vroom et al., 2017), and anthropogenic20

activities (Cloern et al., 2016; Kennish, 2019).21

Since the advent of the satellite era nearly six decades ago, the spatial and temporal resolution of SST22

measurements from remote sensing has improved dramatically (O’Carroll et al., 2019; Minnett et al.,23
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Figure 1: a) The locations of all thirteen buoys installed and monitored by the Rhode Island Department of Environmental
Management (RIDEM) are denoted as smaller yellow circles. The National Oceanic and Atmospheric Administration
(NOAA) tide gauges are shown in stars, and the United States Geological Survey (USGS) monitoring gauges are shown
in larger circles in this Narragansett Bay bathymetry map. The bathymetry data is collected from Ryan et al. (2009), b)
The comparison between the in-situ and bias-corrected satellite temperature is illustrated. The red dotted line shows a 1:1
relation.

2019; Lloyd et al., 2021). Advanced spectral and radiometric resolution are frequently used to monitor24

the physical features of estuaries. Examples include the Moderate Resolution Imaging Spectroradiometer25

(MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Geostationary Ocean Color26

Imager (GOCI) (Kilpatrick et al., 2001; Fournier et al., 2015; Barnes and Hu, 2016; Sathyendranath et al.,27

2019; Zeng et al., 2020). However, satellites that are designed to accurately measure km-scale or larger28

features (e.g., Advanced Very High-Resolution Radiometer, with ∼ 1 km spatial resolution) can not29

resolve oceanographic processes near coastlines, such as salt intrusions, freshwater discharge, thermal30

plumes, tidal currents, and storm surges due to their small characteristic length-scales. Therefore, it31

is important to improve satellite instruments or leverage high-resolution satellite products to acquire32

information near the coasts.33

NASA’s Landsat program has acquired the longest continuous record of Earth’s global land surface.34

While most of the Landsat applications focus on land resources (e.g., vegetation, wildfire, urbanization,35

and biomass changes), Landsat’s thematic mapper (TM) band and thermal infrared sensors (TIRS) can36

be utilized to investigate coastal SST variability at very high (30-120 m) spatial resolution (Tarantino,37

2012; Jaelani and Alfatinah, 2017; Fu et al., 2020). TM and TIRS capture thermal radiation emitted38

by the sea surface, which can then be converted into temperature values (Reddy, 2018; Vanhellemont39

et al., 2022). Nonetheless, using Landsat to measure SST can present challenges. For example, clouds,40

sun illumination, and other atmospheric noise can affect radiation-detected optical images. Addition-41

ally, Landsat’s lower sampling rate is not sufficient to retrieve high-frequency estuarine events that can42

influence SST (e.g., tides).43

An effective way to address Landsat’s infrequent sampling rate is to combine satellite measurements44

with in-situ observations, such as fixed buoys, autonomous floats, and ship-based measurements. Gen-45

erally, in-situ instrumentation provides high accuracy and temporal resolution. There are practical uses46

of on-site measurements in effectively tracking estuarine tidal patterns (Adebisi et al., 2021), offshore47

water salinity (Zhao et al., 2017), estuarine plumes (Li et al., 2017), cloud formations (Wojtasiewicz48

et al., 2018), underwater topography (Fassoni-Andrade et al., 2021), and thermal effluents (Benoit and49

Fox-Kemper, 2021). However, installation and maintenance of these instruments can be logistically tax-50
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ing, especially in harsh or remote locations. These observations are, by necessity, sparse in space and51

thus cannot resolve spatial variability in detail (Ibrahim and Samah, 2011; Jeong et al., 2016). A hybrid52

approach–merging and cross-calibrating satellite and in-situ records–can mitigate this limitation.53

For decades, existing climate models with assimilated satellite and in-situ observations have accu-54

rately predicted large-scale patterns, such as global average temperature fluctuations and mean ocean55

circulation (Semtner, 1995; Folland et al., 1999; Dangendorf et al., 2021). However, for practical appli-56

cations like estuary, bay, or city management, understanding local environmental changes is crucial. In57

this paper, we demonstrated a methodology to create spatially resolved maps of regional SST variability58

using Landsat and in-situ data at a very high resolution. We chose Narragansett Bay for this research59

because it builds on an important line of work (Karentz and Smayda, 1984; Carney, 1997; Fox et al.,60

2000; Fisher and Mustard, 2004; Melrose et al., 2009; Smith et al., 2010; Benoit and Fox-Kemper, 2021)61

to quantify local changes in this important estuarine region. This study can serve as a model for similar62

research in other locations. Narragansett Bay (Figure 1a) is a small estuary on the north side of Rhode63

Island Sound that has made a significant contribution to the local community, biodiversity, and marine64

resources. It needs to be emphasized that Narragansett Bay and other similar-sized estuaries often fall65

within a single pixel of large-scale climate models and can potentially blend into satellite images. Thus,66

in addition to gaining an understanding of Narragansett Bay, this work represents an important step67

towards achieving high-resolution SST mapping, which is essential for understanding small-scale ocean68

properties and dynamics.69

Previous literature showed promise in using Landsat imagery to describe the SST distribution and70

evolution of Narragansett Bay (Carney, 1997; Nixon et al., 2003). Based on an analysis of 53 Landsat71

scenes from 1984 to 2002, Fisher and Mustard (2004) pointed out that shallow-water bodies in Southern72

New England exhibit more extreme temperature variations (-2 to 25°C) compared to deeper water bodies73

(4 to 18°C). Benoit and Fox-Kemper (2021) utilized statistical techniques to evaluate the temperature74

distribution and spatial pattern of thermal effluent generated by the Brayton Point Power Station. We75

extended the methodology of Benoit and Fox-Kemper (2021) and outlined the primary modes of vari-76

ability of the SST patterns shown through continuous monitoring of the entire bay. A key distinction77

between Benoit and Fox-Kemper (2021) and our methodology in calibrating the Landsat dataset is that78

we examine more factors that contribute to a buoy-satellite temperature mismatch: buoy locations, mea-79

surement acquisition times, measurement temperature, and tidal phases. We also imputed missing cloud80

pixels in the buoy-calibrated SST record (Beckers and Rixen, 2003) so that external artifacts are reduced81

in temporal averaging. Using this continuous, buoy-calibrated, noise-reduced dataset, we identified the82

primary modes of variability using an Empirical Orthogonal Algorithm (EOF) based pattern recognition83

technique. Finally, in a weakly stratified, shallow-water estuary like Narragansett Bay, tides can pro-84

foundly govern the biological, physical, and morphological features (Wells, 1995; Nidzieko, 2010; Cheng85

et al., 2011; Dalrymple et al., 2012). Given the limited sampling frequency of Landsat, we demonstrated86

two different techniques to assess Landsat’s recording of typical temperature patterns in flood, ebb, high,87

and low tidal phases.88

This paper is organized as follows. Section 2 and Section 2.1 describe the study area and basic89

variability of Narragansett Bay. Sections 3.1 and 3.2 provide a detailed description of the data sources,90

while Section 4 discusses the general methodology of the paper. The final results and discussion are91

presented in Section 5. We concluded the writing with a complemented forward-looking perspective on92

enhancements and possible uses of the techniques we applied in this paper.93

94

2. Study Area95

Narragansett Bay spans 328 km2, constituting the largest estuary in New England. A four-river96

system provides the bay with a total freshwater influx of 105m3 s−1, further augmented by an additional97

37m3 s−1 from annual rainfall reaching approximately one meter (Fox et al., 2000). Its dynamic water-98

shed generates a distinct salinity front where river water meets the open ocean and forms a freshwater99

plume that extends to Rhode Island Sound. Narragansett Bay watershed fosters a rich diversity of plant100

and marine animal species (Raposa, 2009; Byron et al., 2011). From an economic standpoint, this region101

serves as home to over two million residents (as of 2024) in Rhode Island and Massachusetts and plays102
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a key role in sustaining the blue economy of this region of the United States (Oviatt et al., 2003; Alves,103

2007).104

2.1. Estuary Variabilities: Narragansett Bay105

Narragansett Bay is particularly susceptible to climate change, given its vicinity to the Gulf of Maine106

(GoM), Nantucket Shoals region, and Mid-Atlantic Bight (MAB). According to Mills et al. (2013),107

the water temperature of the GoM has been increasing at one of the fastest rates globally. Much of the108

water from the GoM flows towards the outer shelf, which builds up the immediate connection through the109

Nantucket Shoals region. The waters reaching Narragansett Bay spent time floating over the Nantucket110

Shoals region, where the seasonal surface fluxes of heat can introduce SST variability (Beardsley et al.,111

1985). Chen et al. (2014) reported that these seasonal surface fluxes of heat have large spatial scales112

(i.e., the linkage between the atmospheric jet stream variability and ocean response is common over the113

north MAB and close to Narragansett Bay). These large atmospheric fluxes influence the climatology114

of the bay. Finally, the mean along-isobath heat and salt at the northeast end of the MAB are largely115

set by inflows from the GoM (Lentz, 2010) and can result in additional SST variability in Narragansett116

Bay.117

The local weather and SST patterns in Narraganset Bay are predominantly affected by solar radiation,118

estuarine flows, tidal cycle, and wind-driven forcing (Mustard et al., 2001; Geyer and MacCready, 2014;119

Bowers and Brubaker, 2021). Typically, the water surface temperature of the bay oscillates between -2°C120

and 25°C throughout the year (Fisher and Mustard, 2004). However, the northern segment of the bay121

is exposed to more extreme temperature changes between seasons due to its shallower bathymetry and122

proximity to the river run-off. The shallow waters can be locally warmed and cooled relatively quickly.123

The residence time of the estuary (∼ 26 days) makes local forcing even more important (Pilson, 1985).124

The semi-diurnal M2 tide plays a crucial role in the tidal circulation and contributes to 80% of the total125

current energy (Kincaid, 2006). The sea level elevation in the bay typically oscillates between 0.06 to126

1.6 m. Wind-driven variability has also been shown to influence the changes in SST in Narragansett127

Bay (Pfeiffer-Herbert et al., 2015). Wind can potentially mix the entire column of shallow waters and128

promote uniform temperature changes. In contrast, deeper waters resist rapid mixing due to their higher129

thermal inertia and stratification. Finally, low-frequency river variability dominates sea surface salinity130

in models of summertime conditions—to the extent in which responses to individual force agents can be131

quantified (Sane et al., 2023).132

3. Data133

3.1. Landsat Imagery134

We collected images from the United States Geological Survey (USGS) EarthExplorer (https://135

earthexplorer.usgs.gov) multi-spectral Collection 2 Level 2 Geo-TIFF Data Products from Landsat136

5, 7, and 8 satellites. We set the study area within the rectangular bounding box from Path 12, Row 31137

of the WRS 4/5 coordinate system. The satellites are sun-synchronized, and each image is taken every138

16 days at approximately 15:30 GMT. The window when Landsat 7 and 8 are both available (on an 8-day139

offset) roughly doubles the sampling frequency. However, the presence of clouds often blocks the view140

and extends the delay between scenes. We applied Land-mask and cloud quality attributes to ensure the141

reliability of the SST analysis following Hansen et al. (2013). We selected a total of 764 scenes with less142

than 80% cloud coverage, which we further processed to reduce the contamination (Section 4.2). The143

final collection of scenes had an average sampling interval of 18.375 days (441 hours). The atmospheric144

correction units are expressed as reflectance, and the thermal band values are in Kelvin.145

3.2. In-situ Observations146

We used water temperature (°C) data from the monitoring station networks overseen by the Rhode147

Island and Massachusetts Departments of Environmental Management/Protection (RIDEM, MassDEP).148

4



Figure 2: Details on the timeline of all 13 buoys: start and end dates, active months, and the bathymetric depth (in meters)
at each buoy location.

These stations are strategically positioned across the bay and continuously record water quality param-149

eters at 15-minute intervals. We solely utilized data from RIDEM, which covers 13 locations within150

Rhode Island, and omitted buoy data in Mt. Hope Bay from the MassDEP because those two buoys151

were only installed recently. The monitoring stations span the estuary from near river mouths through152

the freshwater-marine mixing zone (see Figures 1a and 2). Not all buoys are year-round; the data pre-153

dominantly focus on the spring to fall seasons, resulting in a calibration that would be weighted toward154

the summer months if averaged directly. We collected the hourly sea level elevation data (2003-2019)155

from the National Oceanic and Atmospheric Administration (station 8447386 Fall River, MA, and station156

8454658 Narragansett Pier, RI).157

4. Method158

In this section, we present the data analysis tools used for Landsat (Bias Correction, Cloud In-Filling,159

EOFs) and applied to both buoys and Landsat (detrending, Lomb-Scargle power spectra).160

4.1. Bias Correction161

Landsat’s long-wavelength thermal bands predominantly represent so-called water skin temperature162

(approximately 10µm). By contrast, RIDEM buoys are generally installed at depths ranging from 0.5163

to 0.8 m below the water surface. Under typical conditions, both satellites and buoys indicate similar164

temperatures due to surface mixing. However, under very calm conditions, the measurements can differ165

due to limited mixing (Schneider and Mauser, 1996). Fundamentally, buoys and satellites measure166

different properties (Emery et al., 2001), but for our goal of combining the spatial coverage of the satellites167

with the temporal sampling of the in-situ buoys, we neglected this distinction and cross-calibrated to168

reduce it. Additionally, Landsat and buoys register temperatures at slightly different times. To minimize169

the temperature differences resulting in sampling misalignment, we employed a bias correction technique170

with specific corrections tailored to all three Landsat satellites.171

The temporal sampling rate of Landsat (approximately 18.375 days) significantly differs from that172

of the buoys (every 15 minutes). To avoid momentary anomalies, we registered each buoy temperature173

by averaging five buoy readings closest to the time a satellite image is captured, following the approach174

of Benoit and Fox-Kemper (2021). We registered the Landsat pixel temperatures by taking into consid-175

eration that the buoys can move over a short distance due to tidal flows against their anchor lines and176

deviations in their anchoring position when they are redeployed season after season. Therefore, in this177

case, we computed a spatial average within a 200-square-meter zone around all thirteen buoy nominal178

locations.179

The adjustments of both temporal and spatial sampling set the ground for us to apply the bias180

correction and linear re-scaling. We denoted the original satellite data as Ts, the buoy data as Tb, and181

the bias-corrected satellite data as T ′
s. We proposed that the bias consists of an arbitrary constant n182
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Table 1: Specifications of all three Landsat satellites: thermal band, wavelength (λ), and spatial resolution are provided.
The m and n values result after solving equation 1 with a standard K-Fold cross-validation, with K = 5.

Satellite Band λ (µm) Pixel m n Period
L5 TM 10.40-12.50 60m -0.0167 1.188 1984-2011
L7 TM Band 6 10.40-12.50 60m -0.1068 1.6711 1999-2022
L8 TIRS 10.60-11.19 100m -0.1304 2.2719 2013-2022

Figure 3: The representation of mean bias as b̄ = b̄(x, y, t, T ). a-b) Spatial arrangements of b̄ in all buoy locations, c) Time
dependency of b̄ with and without winter seasons, d-i) Comparison of the b̄ = b̄(T ) in different temperature bins by d-f) the
method of Benoit and Fox-Kemper (2021) against g-i) the new method. The background bars (in grey) show the number
of measurements within each temperature bin for all three satellites.

and a temperature-dependent component m. The error E observed after adjusting the data using the183

estimated values of m and n is expressed by the equation:184

E = Tb − T ′
s = Tb − (Ts +m · Ts + n). (1)

For a given sample number N , our objective was to determine the optimal values of m and n such185

that the mean of E is zero (mean(E) = 0) and the variance of E is minimized. To estimate m and n that186

satisfy Equation 1, we performed a standard K-fold cross-validation (Lachenbruch and Mickey, 1968;187

Refaeilzadeh et al., 2009). Table 1 shows important specifications for each Landsat satellite. After the188

bias correction, we prepared the collective temperature dataset for four decades by calibrating Landsat189

pixels over the lifetime of each satellite. The quality-controlled buoy data covers 2003 to 2019, so the190

calibration was limited to this timeframe. Figure 1b shows the relationship between the calibrated191

satellite temperature and its corresponding in-situ temperature. Our approach to bias correction differs192

from that of Benoit and Fox-Kemper (2021), where they introduced the error as E = Tb − (Ts + σ̄).193

Their method involved determining the mean bias (σ̄) by repeatedly sampling both buoy and satellite194

temperatures and calculating the biases of the random sample ten thousand times (ref. to Section 2.2195

of this paper). Using that approach, they computed mean biases for each Landsat satellite and then196

re-calibrated the satellite temperature dataset by subtracting these mean biases from the corresponding197

satellite scenes.198
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We assessed the effectiveness of both bias correction methods by comparing the dependency of the199

mean bias across all buoy locations (x,y), measurement acquisition time (t), and instantaneous mea-200

surement temperatures (T). Compared to Benoit and Fox-Kemper (2021), our proposed bias-correction201

formula improves the mean bias dependency in space (not shown), in time (not shown), and by tem-202

perature bins (shown in Figure 3). Figure 3a-b presents the spatial arrangements of the mean bias as203

b̄ = b̄(x, y) using our method. The root mean squared difference (RMSD) remains below 2 for most of204

the buoy locations, except for buoy 10 (RMSD = 3.25). It is likely due to its unique location in a narrow205

strait and shallower bathymetric depth (−2.47 m) with a significant freshwater inflow (∼ 1400 ft3/s)206

which can result in a slightly different surface water composition compared to the other buoy locations.207

The correlation coefficients in nearly all buoy locations are greater than 0.9, indicating a strong agree-208

ment between satellite and buoy measurements. Figure 3c represents b̄ as a function of time. Most buoys209

were operational only during the fall and summer seasons, so there is less data to calibrate the winter210

seasons. Therefore, mean bias in summer and fall can be made even closer to zero by considering only211

those seasons (dashed blue line). As buoys and satellites measure different temperatures, it is expected212

that the calibration also depends somewhat on season and temperature, as winter tends to have stronger213

mixing due to storms and convection, while summer tends to have more near-surface stratification due214

to stronger insolation. Thus, the simple temperature magnitude correction in (1) is justified but is215

parsimonious to avoid substantial overfitting.216

A notable improvement in bias correction compared to Benoit and Fox-Kemper (2021) is observed217

in the temperature dependency of the mean bias. In the previous study, the calibrated satellite pixels218

tended to underestimate the in-situ measurement at lower temperatures and marginally overestimate219

the in-situ measurements at higher temperatures, consistent with the expected seasonal cycle of near-220

surface stratification. This phenomenon leads to higher standard deviations in the colder (0°-10°C) and221

warmer (25°-30°C) temperature bins (Figure 3d-f). The new method reduced this issue by satisfying the222

condition in Equation 1 for the temperature-dependent coefficient (m) and sets the mean bias close to223

zero across all temperature bins (Figure 3g-i).224

4.2. Cloud In-filling225

Satellite image cloud in-filling is a technique to restore missing data caused by cloud cover (Wulder226

et al., 2011) facilitating the generation of continuous and uninterrupted sea surface temperature maps227

(Lindquist et al., 2008; Roy et al., 2010). Narragansett Bay is susceptible to persistent cloud cover because228

of frequent weather fluctuations and cold air interacting with the temperate water south of Cape Cod229

(Dalton et al., 2010). Hence, satellite observations of the bay can be interfered with, particularly during230

the fall and summer months when cloud cover is more prevalent. Landsat does not penetrate clouds, so231

in order to avoid seasonal biases in averaging and to use pattern recognition approaches, cloud infilling is232

used to impute SST where clouds are overhead (scenes on the cloudiest days are neglected altogether). We233

used the Data Interpolating Empirical Orthogonal Functions (DINEOF) algorithm (Beckers and Rixen,234

2003; Alvera-Azcárate et al., 2011) to impute the missing (cloud-covered) pixels in the bias-corrected data235

from May 1984 to September 2022. To estimate errors, we added synthetic clouds at random locations236

over the bay and compared the filled-in values to the true values (see Table 2). Of course, real clouds237

shade the region below and thus have additional physical effects on temperature, which the synthetic238

cloud error estimates neglect.239

Table 2: Statistics for likely error (°C) in each infilled data point, based on tests using synthetic clouds of withheld data.

Mean Standard Deviation Skewness Kurtosis
0.670 3.277 1.252 6.550

4.3. EOFs of the Bay240

Empirical Orthogonal Function (EOF) analysis is a standard, simple way to identify dominant vari-241

ability patterns in multivariate datasets (Weare and Nasstrom, 1982; Chen and Harr, 1993; Hannachi242

et al., 2007; Navarra and Simoncini, 2010; Cheung et al., 2019). Singular Value Decomposition (SVD)243

provides the most convenient and efficient way to calculate EOFs (Kelly, 1988). SVD decomposes the244

data matrix into three matrices: M = USV T . Here, the left vectors (columns of U), singular values (S),245
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and right vectors (columns of V) provide essential information about the different empirical modes of246

the SST record that can be ordered by the amount of variance explained by each mode. The singular247

value represents the strength of each mode. The left vector, being the column aligned as to operate248

on one particular singular value, describes the normalized temporal changes of a mode. The matching249

right vector contains its spatial pattern (after reordering its components onto the grid). In our analysis,250

we adopted the terminology of Paden et al. (1991) to designate the EOFs magnitude as “covariance”251

because MTM is the covariance matrix whose eigenvalues are the singular values squared (Fox-Kemper,252

2004). The computation of the covariance is expressed as
∑m

j=1 S
2
j /

∑n
i=1 S

2
i , where j runs over the m253

modes of interest, and i runs over the n total number of modes (Fox-Kemper, 2004).254

An important caveat of the EOF method is that the left and right vectors are always orthogonal.255

Sometimes, this means that the detected modes are not robustly linked to the physical modes of vari-256

ability. Thus, we examine both EOF patterns and simpler composites, e.g., of tides and seasons, which257

do not have this potential source of error.258

4.4. Detrending and Isolation of the Climate Change Signal259

We identified a local trend at every spatial location over the length of each record in both Landsat and260

buoy temperature. We calculated the trend using a least-squares regression similar to the one described261

above in the bias correction Section 4.1. However, here, we used linear fit to estimate the deseasoned262

annual mean temperature at each grid point. First, we worked out the mean and trend coefficients by263

least squares from individual grid points to produce the detrended Landsat temperature. This fitting264

process follows the polynomial plus the annual cycle equation:265

SST (x, t) = bs(x) sin

(
2πt

T

)
+ bc(x) cos

(
2πt

T

)
+ c0(x) + c1(x)t+ ξ(x, t) (2)

Considering both the spatial and the temporal dependency of the SST in the bays, equation (2) can266

be written as267

SST (x, t) = bc(x) cos(Ωt) + bs(x) sin(Ωt) + c0(x) + c1(x)t+ ξ(x, t) (3)

In both equations, c0, c1 are the mean and trend coefficients to be determined, T is the cycle period,268

bs, bc are the seasonal cycle coefficients, and SST (x, t) is the grid point temperature as a function269

of space and time. We determined the annual cycle coefficients with the Fourier transform of the270

annual band (hence, Ω = 2π
365.2425 d ). Since the seasonal sampling was uneven, we applied the Lomb-271

Scargle method (Attivissimo et al., 2000) for this frequency band. We tested the robustness of the272

Fourier-determined annual cycle by building a monthly mean climatology and found similar results.273

Individual grid points then had their mean, trend, and annual cycle removed to produce the detrended,274

deseasonalized Landsat temperature record (ξ(x, t)). Next, we computed the uncertainty linked to each275

year by taking into account one standard deviation of the average temperature readings across all grid276

points for that particular year. Both spatial and temporal uncertainties are encompassed in the last term277

of equation (4), which is a space- and time-average of equation (3).278

⟨SST⟩ = ⟨c0⟩ (4)

We assumed that the linear trend is implemented in such a way that it does not contribute to the mean279

over the time window under consideration. Although the other terms in equation (2) vanish in the280

estimate, their uncertainty does contribute to the uncertainty in equation (4),281

⟨SST2⟩ − ⟨SST⟩2 = ⟨ξ(x, t)2⟩ = ⟨σ2
x⟩

Nx
+

⟨σ2
t ⟩

Nt
. (5)

where σx, σt are the standard deviations of ξ(x, t) in space and time and Nx, Nt are the number of degrees282

of freedom in space and time averaged over so that the ratios in (5) are the standard error of the mean283
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Figure 4: a) The time series and b) frequency spectrum of the SST record show that Landsat can capture the annual
cycle but lacks the temporal resolution to capture high-frequency events like M2 tides. The buoy SST record c) time series
and d) spectrum show it can resolve the tidal and diurnal cycles. The lunar semidiurnal tidal frequency is the dominant
constituent in Narragansett Bay. This figure shows data for the buoy 13 location as a representative example.

in space and time. It is assumed for error estimation that most of the uncertainty in c0 results from284

sampling of variability in ξ(x, t) rather than from misestimation of the linear and annual coefficients285

(bs, bc, c1).286

Equation (5) pertains to the inherent uncertainties in sampling, both in terms of space and time,287

arising from the shifts in climate conditions over the past four decades in the bay. To address spatial288

uncertainty, we initially created a composite of 39 image sets, each containing the deseasonalized tem-289

porally averaged temperature data for each year (1984-2022). Then, to estimate the spatial sampling290

uncertainty (standard error), we applied bootstrapping to this collection of 39-year averages across the291

entire grid using 10, 000 samples for each step of the calculation for both bays. This approach of directly292

estimating the standard error rather than using the spatial standard deviation precludes the need to293

know the number of degrees of freedom Nx. As for the temporal sampling uncertainty, we measured the294

standard deviation (σt) of temperature measurements specific to each year. Then, we divided this value295

by the number of scenes (Nt) captured that year, i.e., assuming the different scenes are uncorrelated and296

independent. This number varied; for instance, eight images were collected in 1984 and six in 1985. The297

resultant temporal (σt/
√
Nt) and spatial (σx/

√
Nx) standard error uncertainties are visually illustrated298

in Figure 6 to explain the annual and inter-annual temperature evaluation in section 5.1.299

4.5. Data Sampling for Tidal Phases300

Narragansett Bay is a tidally dominated estuary with a dominant semi-diurnal M2 tidal frequency301

constituent (Bowers and Brubaker, 2021). Much of its high-frequency oceanographic characteristics can302

be attributed to its tidal forcing (Spaulding and Swanson, 2008). The Landsat SST record has an average303

sampling rate of about 18.375 days. So, the Nyquist sample rate is near 9.18 days, meaning the highest304

frequency we can reliably detect is 1/9.18 cycles per day. Therefore, Landsat only offers climatological305

insights into the high-frequency SST variability (Figure 4a-b). However, the high-frequency buoy SST306

records compliment our study because it contains information at the diurnal cycle (1 day), M2 tidal307

frequency band (∼12 hours) along with other tidal bands and overtones, and the annual cycle (Figure308

4c-d).309

Due to the diurnal inequality, which results from the different solar and lunar day lengths (De Boer310

et al., 1989), the bay has a variety of tidal ranges captured at the time of Landsat scenes. Therefore,311

when we look at the water level at any particular time over many days, we will notice variations in the312

inter-tidal areas, sea-level elevation, and exposed tidal flats. Given its sun-synchronous orbit (Wulder313

et al., 2019), Landsat passed over the bay at different tidal phases from 1984 to 2022. As a result, our314

collection of satellite scenes will show different tidal phases and the temperature of the bay at any given315

tidal phase. All four phases of the tide (high, low, ebb, and flood) can contribute to variability in the316

temperature anomaly in our dataset. Thus, before any further analysis, we looked at how Landsat scenes317

were sampled across all four tidal phases. We separated each scene and labeled their corresponding tidal318

phase using a so-called ‘tidal phase shift’ diagram (Figure 5a). The tidal phase shift diagram differentiates319
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Figure 5: a) The tidal phase shift diagrams from the times when Landsat scenes, Buoy 11, and Buoy 13 data are available, b)
Annual sample observation count (764 scenes from 1984-2022) in Landsat record. Note that there were only ten observations
in 2011, c) Percentage of sample across all four tidal phases. More variability in the sample was present when only Landsat
5 was operational

each tidal phase by calculating the changes in the instantaneous sea-level elevation with respect to its320

local derivative of time. To mitigate the potential risk of aliasing, we validated this method by comparing321

the temperatures at different tidal phases recorded at buoy locations 11 and 13. Until 1999, only Landsat322

5 was operational, and the sampling was more biased toward low tide. However, after 2000, with the323

addition of Landsat 7 and 8, the scenes were almost uniformly sampled across all tidal phases (Figure324

5b-c).325

5. Results and Discussion326

It is important to note that when considering longer-duration variability (Sections 5.1-5.3), the tem-327

perature record from the Landsat 5 satellite between 1984 and 1999 led to greater inconsistencies due328

to scan-correlated level-shift noise (Welch et al., 1985) and low-frequency coherent noise (Metzler and329

Malila, 1985). However, with the inclusion of later releases (i.e., Landsat 7 and 8), these effects were330

reduced.331

5.1. Inter-annual Variability with Trends332

The most pronounced SST variation in the bay occurs with annual frequency, and removing this333

frequency reveals residual inter-annual changes, which are primarily a warming trend (Figure 6a). Nar-334

ragansett Bay is warming up (0.057±0.024°C yr−1), and its embayment Mt. Hope Bay is warming more335

slowly or not at all given the uncertainty (0.015 ± 0.018°C yr−1). We noticed that greater spatial and336

temporal uncertainties persisted until 1999 due to the sole operation of Landsat 5 during that period.337

Additionally, both bays appeared to follow a similar warming trend until 2011, coinciding with the oper-338

ational period of the Brayton Point Power Station. However, the annual mean temperature trend in Mt.339

Hope Bay decreased following the cessation of the power station. The warming trend of Narragansett340

Bay is not spatially constant (Figure 6b). No regions are naturally cooling except in Mt. Hope Bay341

near the former location of the power station, whose thermal effluent significantly contributed to its342

heat budget (Levy et al., 2000; O’Neill et al., 2006; Benoit and Fox-Kemper, 2021). We identified a few343

regions near Prudence Island, Kickemuit River, Jamestown, and Patience Island as ‘hot spots’ because344

they are experiencing the highest (0.055 to 0.065°C per year) warming.345

It is worth commenting here that there are a number of ecological questions to which this result346

might be applied, and that can further draw attention to conservation efforts. For instance, the Sakonnet347

River, Creek, and Kickemuit River Shellfish Management Areas, along with the Rhode Island Shellfish348
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Figure 6: a) Annual sea surface temperature trend of the bays. Each data point shows the annual average temperature c0
over the area and one standard deviation uncertainty (ref. to Section 4.4). b) A linear fit after removing the seasonal cycle
was used to calculate the trend (c1 given in °C yr−1) of the temperature change for each pixel over 39 years. Here, PI =
Prudence Island, SR = Sakonnet River, JT = Jamestown, and KR = Kickemuit River. The stars denote to the important
shellfish management and harvesting areas in the bay.

Restoration and Enhancement Plan Area (locations colored in green, grey, magenta, and cyan stars,349

respectively, in Figure 6b) are critically important for harvesting local fisheries like shrimp, crab, mussels,350

and oysters (Dalton et al., 2010; DeLucia, 2015; McManus et al., 2020). However, these ecosystems are351

particularly vulnerable due to the higher warming rate. Previous literature has shown that increased SST352

leads to elevated CO2 levels, low oxygen conditions, and amplified acidification (Heath et al., 2012; Cocco353

et al., 2013). These collective effects can harm shellfish, impede their growth, compromise their immune354

responses, and impair their overall cultivation prospects (Mackenzie et al., 2014; Hernroth and Baden,355

2018). Moreover, estimating the number of days a location remains above a threshold temperature can356

help identify and predict how local transplants (e.g., eelgrass) will respond to elevated temperatures357

(Plaisted et al., 2022; Sawall et al., 2021). Finally, it still remains unclear how early high spring SST358

can negatively impact estuarine productivity and the nesting growth of coastal birds along the New359

England coasts (Moore et al., 1997; Bertram et al., 2001; Bonter et al., 2014; Carroll et al., 2015). In360

the following sections, we discuss the average seasonal temperature variability (Section 5.2), the decadal361

warming trends for each season (Section 5.3), and the dominant variability patterns (Section 5.4) in the362

bays. We anticipate that these results will be valuable for local jurisdictions and policymaking in taking363

necessary precautions for ecological preservation.364

5.2. Seasonal Variability365

The seasonal cycle is the most influential driver of the temperature distribution and variabilities in366

Narragansett Bay. The unique location of the bay as an estuary, neither subtropical nor purely marine,367

introduces additional factors to play minor roles as seasons change—for example, the vertical mixing of368
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fresh and brackish water and localized ambient air temperature (Chen and Harr, 1993; Deser et al., 2010;369

Alexander, 2010). To determine the seasonal mean temperature, we first took the temporal average -370

1

N

N∑
t=1

T (x, y, t)

and then averaged over space -371

1

X · Y

X∑
x=1

Y∑
y=1

T (x, y)

Here, T (x, y, t) is the time-varying grid temperature, x, y is the grid size, and t refers to time. N is the372

number of observation counts in each season. The mean temperature for each season with associated373

uncertainty (first standard deviation) is reported in Table 3.374

Table 3: Mean temperature data for all four seasons (1984-2022)

Seasons Mt. Hope Bay Narragansett Bay Observation count

Winter 4.07± 0.29°C 4.53± 0.37°C 181

Spring 10.58± 0.42°C 9.60± 0.44°C 182

Summer 22.02± 0.51°C 20.53± 0.59°C 224

Fall 15.65± 0.23°C 15.43± 0.42°C 177

The maps of the seasonal means offer a detailed insight into the variability of seasonal cooling and375

warming intensities throughout the year (Figure 7). Isolated and shallow areas feature pronounced376

temperature variations (-1 to 31°C) compared to the deeper, well-connected embayments (1 to 25°C)377

and the ocean (5 to 17°C). A closer look at Figure 7a reveals a time lag between the instances when378

temperatures reach extremes in the upper estuary versus the ocean. For example, the maximum cooling379

(heating) occurs in January (mid-August) in the upper bay, while the shelf experiences this in late380

February (mid-September). The general SST climatology of the bay is plotted in Figure 7b. The381

maximum temperature difference between the upper bay and the shelf can be as much as 4.25°C in382

August and increase to 6.75°C by December.383

Mt. Hope Bay is characterized by its small size (approximately 36 km2), with an average depth of384

5.70 meters. We did not see any significant spatial variability in its seasonal SST cycle (Figure 7c). The385

embayment is well-mixed during the winter; therefore, there is less spatial variability. During the late386

spring and summer, the bay is stratified, and its signature is somewhat visible in the SST anomaly (more387

discussion on Section 5.4). Finally, during the fall, there were more emissions from the power station,388

which is reflected in the SST anomaly map. The climatology is almost similar to that of the entire389

bay, except Mt. Hope Bay shows more temperature extremes during the July and December months,390

corresponding to the peak of summer and winter (Figure 7d). This is because Mt. Hope Bay is relatively391

shallower and more sensitive to any local forcing, such as wind, river run-off, and mixing.392

5.3. Decadal Variability393

Narragansett Bay, especially in the last two decades (2001-2020), underwent considerable changes due394

to warming and anthropogenic influences (Figure 8a). All four seasons are getting warmer, except for395

2001-2010, when the bay experienced the coldest spring. Summer has experienced the most significant396

warming, especially over the past two decades, which coincides with some of the warmest summers397

recorded in the last two decades across the globe (Hansen et al., 2010; Lee and Park, 2019; Bashevkin398

et al., 2022). During the fall, the imprints of the thermal effluents from the Brayton Point Power Station399

are more noticeable, primarily due to the increased activity at the power station during this season.400

However, since 2011, the signal has abruptly declined due to the complete shutdown of the power station.401

Apart from this anthropogenic source, the overall spatial trend of fall nonetheless indicates warming.402

The 39-years-long temperature record was not evenly sampled across the months, which might lead403

to the risk that certain months could skew the weighted average temperature. To prevent this uneven404

sampling bias, we first make a composite of all months for any given season (i.e., DJF, MAM, JJA, SON)405

in each decade. Then, we calculated the decadal mean following the approach mentioned in Section 5.2.406
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Figure 7: Variability of the monthly averages organized by seasons. The maps show a) monthly mean SST anomaly (seasons
and trends are removed) and b) climatology for Narragansett Bay. The same construction for Mt. Hope Bay in panels c
and d.

For a meaningful representation of the decadal trend, we used the deseasonalized data that contains a407

warming trend within it. The associated standard error, SE =
(

σTi,j√
N

)
is reported in Figure 8b, where,408

N = number of samples in each decade, Ti,j is the temperature in the grid cell, and i, j correspond to409

grid size. The range of SE was particularly greater from 1984 to 1990 since we had a limited number of410

observations available from Landsat 5.411

5.4. Primary Modes of Variability412

We utilized Empirical Orthogonal Functions (EOFs, Section 4.3) to analyze a time series of Landsat413

images for Narragansett Bay and Mt. Hope Bay. We aimed to identify the dominant patterns of sea414

surface temperature variability. Given the potential for added errors (as discussed in Sections 5.1 and415

5.3), we focused solely on observations from Landsat 7 and 8 and excluded Landsat 5. We primarily416

focused on the first two modes of EOFs as they explain more than 80% of the SST variability. We417

want to emphasize that the EOFs themselves lack direct physical significance; they serve as a statistical418

orthogonal decomposition of the data matrix. Researchers must carefully interpret the results and419

establish correlations between EOFs and known physical forcings to avoid over-interpreting the findings.420

5.4.1. Narragansett Bay421

EOF1 accounts for ∼ 68% of the variability in the sea surface temperature of Narragansett Bay422

(Figure 9a). This mode predominantly represents the radiative cycle in SST. The spatial amplitudes423
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Figure 8: a) Approximately decadal averages of the annual averages of temperature in the bays. b) Associated sampling
uncertainty (standard error), note especially the higher error during the Landsat 5 era.

(unites are normalized with the standard deviation) are nearly consistent across the entire bay except in424

the open ocean, where the amplitudes are about 20% lower. The normalized units show positive values425

across the bay, indicating that the temperature of the bay rises and falls simultaneously (seasonal cycle).426

The EOF1 time series (eigenvector) displays a sinusoidal signal resembling the typical annual SST cycle427

of the bay, referring to Figure 7b, 7d and Figure 4 from Benoit and Fox-Kemper (2021). The power428

spectra of the EOF1 time series have a peak at 12 months, underscoring the significance of the annual429

cycle within this mode.430

The second EOF mode represents ∼ 12% of the total variance (∼ 35% of the nonseasonal variance).431

In EOF2, a clear gradient in the amplitude is present as we transition from the northern segment of432

the bay to the ocean. We interpret this pattern as the seasonal stratification dynamics in the bay. The433

explanation goes as follows: for extended periods, the stratification cycles in Narragansett Bay are related434

to the spring-neap tidal cycles (Andrews, 1997; Pimenta et al., 2023). During the winter, Narragansett435

Bay is not well stratified—the mixing goes all the way to the bottom of the water column (Codiga,436

2012). However, in the summertime, a separation between deeper salty layers and a shallow, fresher437

surface layer forms. The upper, fresher water can be heated more quickly due to its reduced thickness438

and strong insolation. The deeper water receives less sunlight and is sourced by colder water near the439

mouth of the bay. The primary driver of this variability is the interplay of seasonality in river input and440

seasonal variation in mixing (primarily by surface cooling), with winds exerting only a minor influence441

(Sane et al., 2023). Hence, our interpretation is that the first EOF mode captures the whole depth,442

spatially uniform change with the seasonal cycle. The second EOF captures the seasonal variations,443

including the salt wedge, which is spatially orthogonal to EOF1. We validated this interpretation in four444

ways. First, in Figure 7a, temperature variability during the summer months (JJA) strongly aligns with445

where the salt wedge is shown in EOF2, which is absent during the winter months (DJF). Second, by446

comparing the surface buoy records to the records from sensors on the anchor of the buoys, the average447

summertime buoy salinity vertical stratification gradients, ∆Ssummer, buoy = Sbottom, psu − Ssurface, psu,448

show similar trend with the gradient represented by EOF2 (Figure 9a). Third, the EOF1 calculated on449

deseasonalized, detrended data (not shown) and EOF2 reveal a similar pattern of response across the450

bay. Finally, the power spectrum of the EOF2 time series peaks at a frequency of 12 months, confirming451

the seasonal nature of the EOF2 variability (Figure 9b).452
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Figure 9: a) The spatial EOF maps of Narragansett Bay. The summertime mean salinity gradient at different locations
of the bay is superimposed on the EOF2 map. b) The upper panel represents the time series (eigenvectors) of the first
two modes. The peaks in the power spectrum (indicated with a star) for EOF1 and EOF2 show that the seasonal cycle
dominates. c-d) Similar constructions for Mt. Hope Bay.

5.4.2. Mount Hope Bay453

Due to its small size, the seasonal cycle can mask important estuarine variability in Mt. Hope Bay.454

Also, as Mt. Hope Bay only has one buoy monitoring its temperature, the Landsat records constitute455

probably the best continual historical temperature records of its change. The first three modes of EOF456

explain up to 94% of the SST variance of Mt. Hope Bay. As expected, the first two modes together457

(∼ 89%) explain the interactions between the seasonality in the insolation, river input, and seasonal458

variation in mixing. Interestingly, EOF3 contains a concentrated temperature variability imprint close459

to the Brayton Point Power Station. It is unclear if the seasonality of the Brayton point effluent plume460

pattern (EOF3) reflects part of the natural seasonal cycle or if power usage (and thus thermal emissions)461

was also seasonal based on local demand. With the presence of the seasons, power spectra of the first462

three modes of the EOF time series peak at 12 months (only EOF1 and EOF3 are shown), indicating a463

strong seasonal cycle of warming and cooling of this bay area (Figure 9d).464

In all of Narragansett Bay and Mt. Hope Bay EOF analyses, both EOF2 and EOF3 have notable465

spikes in their time series, indicating that this EOF is responding to localized extremes or satellite noise466

(e.g., misidentified clouds). If the EOFs are calculated after the removal of the seasonal cycle, the467

spatial pattern of deseasoned EOF1 strongly resembles that of EOF2 in the seasonal record (not shown).468

Temporally, some of the spikes are consistent between the two records, but more spikes appear in the469

deseasonalized EOF1 record than in the seasonal EOF2 record, and the correlations of the time series470

of these modes are low. For this reason, while the EOF patterns are interesting to note, we believe that471

the orthogonality constraint on the EOFs time series may be playing an excessively strong role. Thus,472

in most data shown in other sections, we prefer to use composites and fits rather than EOF analysis.473

5.5. Influence of Tides on Temperature Anomaly474

In coastal areas, the tidal phases can strongly influence the SST by altering the rate of mixing and475

stratification (Huang et al., 2019). Landsat can not resolve tides, but a composite of Landsat scenes476

during each tidal phase can show the influence of tide as a temperature anomaly in Narragansett Bay.477

For instance, the summer tides will form a different pattern in the SST anomaly compared to that of478

the winter. To evaluate the possibility, we proposed a ‘composite view’ of tidal SST patterns by two479
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Figure 10: Composites of different phases of the tide in summer and winter (upper panel). The pixels where SNR>1 with
95% confidence level (lower panel).

distinct systematic tests. The first test, the Signal-to-Noise ratio (SNR), evaluates the ratio between the480

desired signal (representing the tidal SST variability) and its background noise (other variability) during481

summer and winter. The second test, ‘HT method’, is predicated on the notion that during inter-tidal482

phases, instantaneous water-level depth (H) and temperature (T) ought to be correlated. Most simply,483

if water from the ocean either advances inland or recedes to the sea with the tides, it will impact both484

instantaneous water level height and temperature.485

5.5.1. Signal-to-Noise Ratio Test486

In this test, we used the deseasonalized, detrended temperature dataset to reduce the aliasing of the487

signals from the seasonal cycles and the warming trends due to variable sampling rates. We made a488

composite of the scenes for each tidal phase as diagnosed by the nearby gauges. For each composite, the489

value of the SNR indicates the imprint of the tidal SST variations (signal) against the remaining variations490

(noise) attributed to local factors. Assuming a t-distribution, we calculated the mean temperature (µ)491

and standard deviation (σ) of the means for each composite over the entire bay. The standard error of492

the mean is σ√
N
. Here, N corresponds to the number of observations, and N − 1 denotes the degrees of493

freedom for each composite. We followed the approach of Johnson (2006) to describe the SNR to be the494

ratio of the squared mean temperature (µ2) of any given pixel to the squared standard error
(

σ√
N

)2

.495

We highlighted the pixels in blue where the signals are statistically significant at a 95% confidence level496

(Figure 10, lower panel).497

The SNR calculated on this composite average measures the clarity of the repeating signal (SST498

anomalies explicitly caused by the tidal forcing) as distinguished from background noise (other variability499

that does not repeat consistently). Figure 7 shows that waters near the mouth of Narragansett Bay are500

typically cooler in summer and warmer in winter than the upper bay. Thus, one might expect flood501

and high tides to be cooler in summer and warmer in winter than the other tidal phases. However,502

the patterns in Figure 10 do not agree with this expectation. Therefore, a different hypothesis is that503

during summer, when the bay is stratified, the ebb phase causes mixing so that the low tidal phase is504

comparably cold. In winter, the decreased stratification does not have this effect.505

5.5.2. HT Method506

As an alternative to the spatial composites of Landsat, we examined whether there is sufficient507

correlation between elevation (tides) and temperature in the records to detect it. The advantage of this508

approach is that it avoids binning into just a few tidal phases, so the full temporal resolution of the in-situ509

buoys can be used. This test can also be applied to reveal Landsat’s capacity to represent the underlying510

tidal temperature variability without arbitrary binning choices. We developed the HT method based511
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Figure 11: a-b) Representation of SST fluctuations due to seasonal cycle and tidal forcing in buoy 11 and 13 locations.
c-j) Temperature variability against its instantaneous sea level elevation, with and without seasonal influence. Panels c to
f represent data from Landsat grids where the buoys are located, while panels g-l show results directly from in-situ buoy
readings.

on the hypothesis that the influx of cold ocean water influences the temperature within the estuary512

regularly and periodically. The pattern of this influx predicts a correlation between an instantaneous513

sea level elevation (H) and estuary temperature (T). Given the limited temporal resolution of Landsat514

data, capturing daily changes becomes challenging. Therefore, in examining correlations, it is easy to515

contrast Landsat against buoy temperature records in their relationship between H and T. This test is516

conducted using both seasonal and deseasonalized datasets.517

Since we are limited to particular buoy locations, we strategically carried out this test near buoy 11518

(41.6861°N, -71.4459°E) and buoy 13 (41.4922°N, -71.419°E), which respectively represent the upper es-519

tuary and the ocean (see Figure 1a). Both buoy locations show different characteristics in SST variability520

and resemble the characteristics of either the upper estuary or the ocean. Furthermore, the temperature521

records from both buoys are extensive enough to be adequate for this test (Figure 11a-b). Here, the522

principles of “stationarity” and “simultaneity” are useful. Stationarity suggests that tidal fluctuations523

possess consistent statistical behavior over an extended number of repeated tidal cycles. Simultaneity524

puts forward the idea that despite the location of one of the stations in the southern part of the bay, the525

phase propagates sufficiently quickly into the bay that all stations are effectively at the same tidal phase526

during a 60-minute SST sampling window or Landsat scene. We validated the effective simultaneity by527

comparing the sea water levels to other tide gauges throughout the bay.528

The HT diagram, as shown in Figure 11c-j, illustrates the covariance between sea level elevation and529

surface temperature. If the temperature does not coherently vary with sea level elevation, there is no530

covariance between H and T , meaning H(t)T (t) = 0. With covariance, the HT diagram will display531

some phases as warmer (farther upward) and others as cooler (farther downward), forming an ellipse or532

oblong circle. If the ellipse axis is tilted rather than vertical, this indicates a high tide is either warmer533

or colder than a low tide. The fact that the scatter is elliptical indicates that there is variability in both534

the temperature and height at the tidal frequency (unlike the squares of the seasonal records). For better535

interpretability and comparability, we normalized the parameters to their z-score values, denoted as H∗
536

and T ∗, where H∗(t) =
H(t)−µH(t)

σH(t)
and T ∗(t) =

T (t)−µT (t)

σT (t)
.537
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Figure 12: a-d) The statistics of samples of H(t) · T (t), without averaging. e-h) Bootstrap histograms, with a 10,000

sample size, estimating the means H(t) · T (t) and their uncertainty. Seasons and trends must be removed from the Landsat
temperature in order to have Landsat and buoy distributions of the means agree in the sign of the correlation, and even
then, the Landsat histograms are wider (with more instrumental errors and fewer samples) than the buoy temperatures.

When seasons are present, both Landsat and buoy temperatures are uncorrelated with tidal forc-538

ing, as indicated by the rectangular-shaped clouds, which show that temperature and height vary but539

independently. This is because the seasonal variability dominates the SST (ref. to section 5.4) and540

tides dominate H, and there is no consistent correlation between seasons and tides.1 In this case, the541

seasons act as ‘noise’ rather than a signal. In the presence of a seasonal cycle, the distribution of T ∗ ap-542

pears almost quadrilateral because regardless of the sea level height, temperatures rise and fall along the543

H∗ = 0 axis line. This makes the HT diagram appear ‘symmetric’, and we can not draw any meaningful544

correlation between H∗ and T ∗. On the contrary, the deseasonalized temperature, especially from the545

buoy record, changes the shape of the distribution, suggesting that H∗(t)T ∗(t) ̸= 0 exists. Due to the546

lack of sufficient sampling, Landsat is limited in capturing H∗T ∗ correlation in the bay. In buoy data,547

the correlation coefficients between T and dH
dt remain consistent across all four tidal phases regardless548

of the seasonal influence. This suggests that the temperature readings detected by HT diagrams are549

indicative of all four phases. To summarize, it is challenging to detect the covariance between the sea550

level height and SST variability using low sampling rates and instrumental inaccuracy. Only with heavy551

averaging over multi-year composites, as in the previous section, Landsat might detect signals in some552

tidal phases.553

A standard histogram of the normalized H and T
(

H(t)
σH(t)

· T (t)
σT (t)

)
distribution can offer scale indepen-554

dence and better interpretability for the quantitative analysis of the relationship between H∗ and T ∗
555

in the results by keeping the mean value close to the original data. The histograms display the inter-556

ference of the seasons at the buoy locations (Figure 12a-d). Eliminating seasonal factors reduces both557

fluctuations and background disturbances, as evident from the x-axis spreads in panels b and d. Both558

Landsat and buoy data exhibit a roughly Gaussian distribution when seasons are removed, but they are559

indistinguishable from zero—meaning there is no detected typical correlation across individual samples.560

When the means and their uncertainty are examined using the bootstrap histograms (Figure 12, e-h),561

only the buoy distributions are consistently nonzero. At both buoy locations, warmer temperatures562

are seen at high tides, and colder temperatures are seen at low tides. The Landsat records are much563

wider–with a fair probability of zero value (no correlation). After the seasons are removed, the behavior564

at the two buoy locations differs (warmer at high tide on the oceanic location, warmer at low tide at565

the upper bay location). The Landsat records are only consistent with the buoy records at the oceanic566

buoy 13 location. Overall, the wider distribution of the Landsat distributions indicates a potential higher567

1A “spring” tide is not a larger tide that occurs during spring; it is the additive interference of the phases of combined
solar and lunar tides, despite what one author’s mother insists.
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instrumental error and fewer samples to average.568

In summary, there is a slight correlation between tides and temperature. It is detectable from the569

buoys and differs when seasonal temperatures are included or excluded, indicating different mechanisms570

at the two buoy locations. These correlations are not detectable by Landsat, except perhaps at the571

oceanic buoy 13 site.572

6. Conclusion573

The techniques and findings presented in this study reveal key aspects of temperature variability in574

a shallow-water, drowned river-valley estuary. Estuaries are the most productive land areas on Earth,575

yet they are the most vulnerable to the adverse effects of global warming, climate change, and human576

activities. We chose Narragansett Bay as our study area not only because it is the largest estuary in577

New England but also because it offers accessibility to in-situ buoys. In this paper, we demonstrated578

the methods to show how fine-resolution environmental indicators (e.g., SST) records can offer a critical579

understanding of multi-scale near-coastal physical processes. While multi-satellite Landsat provides580

excellent spatial coverage, it is sparse in time. A clear goal of this project was to combine in-situ581

measurements with satellite imagery, which would allow us to go back in time and reconstruct a detailed582

record of sea surface temperature over the past four decades. Our proposed bias correction technique583

allowed us to better estimate the sea surface temperature in the satellite record. The methodology584

we applied in this paper is applicable to any in-situ monitored estuary in the world to understand its585

long-term SST variability.586

It must be noted that our dataset is well-suited for climatological analysis, and the focus of the paper587

was to investigate the long-term trends and variability. As a result, no particular synoptic events like588

tropical cyclones, associated fronts, weather anomalies, storms, and river surges were emphasized in our589

study. Integrating in-situ observations with high spatial and temporal resolution satellites will provide590

crucial information on these synoptic events. For instance, MODIS captures images every two days with591

its fine 250-meter thermal band resolution. However, most of these satellites have only been launched592

recently, with few operational since the 1980s, making Landsat our primary choice for this study.593

In this research, we considered a large number of scenes (764). By applying the EOF algorithm,594

we identified and explained the primary modes of variability influencing the key drivers of the SST595

distributions in the bay. For example, the seasonal cycle and the reciprocity between the river run-off596

and summer stratification explain up to 80% of the variability. While we have not yet determined the597

minimum number of scenes needed for a consistent climatology, our analysis of inter-annual and decadal598

variability revealed clear warming trends in the bay. We also identified several regions within the bay599

as ‘hot spots’ of change. These findings will provide valuable information that can support conservation600

efforts aimed at addressing climate change impacts on coastal oceanography.601

Finally, with two distinct methodologies, we demonstrated that the tidal phases do affect SST vari-602

ations in the bay. The first method (SNR Test) illustrated how any individual tidal phase can be603

season-dependent and influence the SST distribution across the bay. The latter one (HT Method) re-604

vealed covariability between the sea level elevation and the instantaneous sea surface temperature during605

any tidal phase. This finding was only consistently possible with the robust sampling and instrumen-606

tal precision of the buoys, given the presence of noise, aliasing, and limited sampling effects that more607

strongly impact Landsat. These results and tests can serve as a model for other tidally dominated estu-608

aries that lack access to in-situ buoys but have alternative measurements, such as tide gauge and ship609

observations, tide gauge and drone observations, or tide gauge and satellite observations where either610

the signal is larger, or the satellite sampling frequency is higher.611
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