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Abstract14

Pacific decadal variability are known to drive global and regional climate and ecosystems15

changes. However, the relative role of internal variability and external forcings in driving16

PDV and the prospects of obtaining a more accurate PDV reconstruction using a wider17

marine proxy network remain unclear. Here, we analyze simulations from the Community18

Earth System Model Last Millennium Ensemble using a information theory metric and find19

that internal variability dominates PDV, with minor contributions from greenhouse gases20

and volcanic forcing. Using a more extensive marine proxy network for PDV reconstruction21

is also shown to outperform PDV reconstruction based on a single proxy record. Collec-22

tively, these results o↵er new insights on the drivers of PDV and pathways to improve PDV23

reconstruction.24

Plain Language Summary25

Variations of Pacific sea surface temperature over decades can pose huge influence on26

global and regional climate. Therefore, we want to understand whether these variations27

happen naturally in the climate system or can be forced by factors that are not part of the28

climate system. But, previous studies only provide partial answers because paleoclimate29

reconstructions do not show a consistent picture of past changes in the Pacific and that30

there are other factors that can influence results from climate models, but are not su�ciently31

considered. In this study, we use a climate model with multiple simulations of the past 100032

years to o↵er a more complete answer. Specifically, we show that decadal scale variations33

in the Pacific ocean arise mostly from interactions within the climate system. We also34

show that by using multiple records in the Pacific ocean in a hypothetical scenario, we can35

obtain a more comprehensive and accurate view of how the Pacific ocean has changed every36

decades. These results together paint a more complete picture of changes in the Pacific and37

tell us how we can better understand changes in the Pacific beyond the instrumental record.38

1 Introduction39

Pacific Decadal Variability (PDV) is a collection of basin-wide phenomena that impose40

significant impacts on global and regional climate. Based on spatiotemporal patterns used41

to describe PDV, primarily the Pacific Decadal Oscillation (PDO) (Y. Zhang et al., 1997),42

Interdecadal Pacific Oscillation (IPO) (Power et al., 1999), and North Pacific Gyre Oscilla-43

tion (NPGO) (Di Lorenzo et al., 2008), past studies have shown that PDV drives decadal44
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scale global mean temperature variations (Dai et al., 2015; Kosaka & Xie, 2016; Meehl et45

al., 2016), regional temperature and hydroclimate (B. Dong & Dai, 2015; McCabe et al.,46

2004), and ecosystems (Mantua & Hare, 2002; Di Lorenzo et al., 2008). The widespread47

impacts of PDV highlight the importance to understand how it varies internally and changes48

in response to di↵erent external forcings.49

Extensive analyses have been done to understand the characteristics, dynamics and50

drivers of PDV. Multiple review studies have highlighted the role of the atmosphere, ocean,51

atmosphere-ocean interactions in the Pacific, tropical-extratropical interactions, and inter-52

basin connections in driving PDV (see Di Lorenzo et al., 2023; Liu, 2012; Newman et al.,53

2016, and references therein). These processes are shown to occur internally without any54

external perturbations (Capotondi et al., 2020; L. Zhang & Delworth, 2015). However, more55

recent studies also noted the influences of greenhouse gases (Bonfils & Santer, 2011; Meehl56

et al., 2013), volcanic eruptions (Maher et al., 2014), and aerosols (Boo et al., 2015; Dittus57

et al., 2021) on PDV (L. Dong et al., 2014; Hua et al., 2018).58

Despite identifying both the internally driven and externally forced components of59

PDV, prior studies mostly focus on the instrumental era, which spans only the past ⇠ 15060

years (e.g., Roemmich et al., 2012; Davis et al., 2019; Giese et al., 2016) and contains ⇠ 1561

non-overlapping decadal samples. As such, the short time period considered undermines62

our ability to accurately characterize internal decadal variability (Stevenson et al., 2010)63

and quantify the role of external forcing on PDV due to the limited range of magnitude and64

sources during this limited window (e.g., Jungclaus et al., 2017; Sigl et al., 2015). Hence,65

our understanding on the spatiotemporal characteristics of PDV and the role of external66

forcings on PDV remains incomplete.67

The last millennium provides a better baseline to more comprehensively characterize68

PDV that arise through chaotic processes in the climate system and those driven by exter-69

nal perturbations. Proxy reconstructions o↵er the most direct measurements of past PDV70

beyond the instrumental record (e.g., d’Arrigo et al., 2001; Felis et al., 2010; O’Mara et71

al., 2019; Porter et al., 2021). However, most PDV reconstructions to date either rely on72

a small number of coral records from a localized region or a network of terrestrial based73

proxy records. Consequently, they might not be able to represent PDV faithfully due to74

nonstationary teleconnections (Du et al., 2020). Climate model simulations have also been75

used to understand the spatiotemporal characteristics of PDV (e.g., Fleming & Anchukaitis,76
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2016; Sun et al., 2022; Wang et al., 2012; Zanchettin et al., 2013; Stevenson et al., 2019).77

Yet, these analyses either focus on multi-model ensemble or model simulations with a single78

realization that is subject to both internal and forced variability. Such experimental pro-79

tocols impede our ability to separate internal variability from di↵erences in model physics80

and individual forcing e↵ects on PDV.81

To better understand the relative roles of internal variability and external forcings on82

PDV, as well as to determine whether we can improve PDV reconstruction by using a more83

spatially extensive marine proxy network, we analyze the the Community Earth System84

Model Last Millennium Ensemble (CESM-LME) (Otto-Bliesner et al., 2016). The CESM-85

LME contains full forcing and single-forcing simulations, thus o↵ers an opportunity to better86

distinguish the role of internal variability and external forcings on PDV that is previously87

unattainable. In addition, e↵orts to compile proxy records over the Common Era (Walter88

et al., 2023) now provide adequate information for us to use the CESM-LME as a testbed89

to understand the sensitivity of PDV reconstructions to a realistic proxy network.90

Here, we use CESM-LME and apply an information theory metric (Sane et al., 2021,91

2024) to determine (1) the spatiotemporal fingerprint of each external forcing and internally92

driven decadal sea surface temperature in the Pacific, (2) the contribution of each forcing93

to total variability of PDV, (3) whether the influence of each forcing on PDV has changed94

in recent decades, and (4) the prospect of using multiple marine proxy records of those95

available to reconstruct PDV.96

2 Data and Method97

2.1 Data98

We used the CESM-LME (Otto-Bliesner et al., 2016) for analysis in this study. CESM-99

LME uses CESM version 1.1, which has a climate sensitivity between that of CCSM4 and100

CESM2 (Meehl et al., 2013; Gettelman et al., 2019) making it suitable for paleoclimate101

studies (Zhu et al., 2020). The nominal resolution is ⇠ 2� for the atmosphere and land102

components and ⇠ 1� for the ocean and ice components. CESM-LME contains multiple103

realizations of full forcing (13), greenhouse gas (GHG) only (3), land use (LULC) only (3),104

orbital only (3), solar only (4), and volcanic only (5) simulations that span from 850-2005 CE.105

Similar versions of CESM1 used in the CESM-LME have been shown to capture the spatial106

pattern (Fasullo et al., 2020) and processes associated with PDV (Newman et al., 2016)107
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more accurately than other climate models that are from the same generation. Nonetheless,108

CESM1 is also known to exhibit too strong El Niño Southern Oscillation (Capotondi et al.,109

2020), which can influence PDV, and an inaccurate tropics-PDO linkage (Newman et al.,110

2016).111

We used information from the PAGES CoralHydro2k database (Walter et al., 2023) for112

pseudoproxy reconstructions. The CoralHydro2k database contains a compilation of coral113

records with oxygen isotopic composition (�18O) and strontium-to-calcium ratio (Sr/Ca)114

measurements from the tropical and subtropical oceans. �18O in coral is sensitive to ambient115

temperature and �
18O of seawater (Epstein et al., 1953) whereas changes in Sr/Ca in corals116

are primarily related to temperature changes (Corrège, 2006, and references therein). Some117

of these proxy records have previously been used to characterize PDV (e.g., Linsley et al.,118

2015).119

2.2 Method120

2.2.1 Spatial and temporal metrics of PDV121

We characterized the temporal characteristics of PDV using the PDO index and the122

IPO tripole index (TPI). PDO is a principal component based index that is commonly used123

to characterize decadal SST variability in the north Pacific (Y. Zhang et al., 1997), whereas124

TPI is an index that does not rely on principal components and is used to characterize125

Pacific basin-wide decadal SST variability (Henley et al., 2015). Details can be found in126

Text S1. To understand the spatial pattern of forced and internal PDV, we applied a 13-year127

low pass filter to SST at each grid cell. A 4th order Butterworth filter was used in all the128

low-pass filtering procedures.129

2.2.2 Information theory based metric130

Because of the complexity of the indices used and described, as well as their potentially131

nonlinear responses to di↵erent forcings and non-Gaussian statistics, we employ information132

theory-based metrics to quantify the relative role of internally forced and externally forced133

variability on PDV. Whereas the traditional approach relies on comparing the variance of134

model ensemble average with across realizations (e.g., Deser et al., 2020; Leroux et al., 2018;135

Llovel et al., 2018), this approach builds on the mutual information between time series,136

not just their correlation, and thus is robust to nonlinear relationships between the forcing137
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and response and does not rely on assumed shapes for their probability distributions (Sane138

et al., 2024).139

Following Sane et al. (2024), we used two information theory metrics to quantify shared140

variability between two variables and variability of a variable: Shannon entropy and mutual141

information (Text S2). Shannon entropy characterizes variability of a variable (Carcassi et142

al., 2021), and can be understood as a quantity that increases with the likelihood of finding143

a surprising or unprecedented result, or as the number of bits needed to count all of the144

states that a system visits. On the other hand, mutual information describes how much145

information entropy within the x signal can be explained by the y signal and vice versa. In146

the context of this study, the Shannon entropy of all realizations of full forcing simulations147

can be used to represent total variability, whereas the mutual information between each148

realization and the ensemble average can represent external variability assuming internal149

variability of each realization is independent from the other ensemble members.150

For our analysis, we first defined f as all full forcing ensemble members, and gx as the151

ensemble mean of a model ensemble (either a single-forcing or initial conditions ensemble),152

where x represents di↵erent forcing scenarios. Then, following Sane et al. (2024), we defined153

a metric � (Equation 1) to estimate the fraction of information in externally forced variability154

x within the information in the total variability. Because we are interested in the relative155

fraction of each forcing x to total variability, we calculated � using di↵erent gx afterwards.156

gx was derived from the initial conditions ensemble (i.e., full forcing) to estimate the fraction157

of all forcings to total variability, and gx derived from di↵erent single forcing ensembles (i.e.,158

GHG, LULC, orbital, solar, and volcanic forcings) to understand the fraction of forcing x159

on total variability. By calculating a gx for each forcing x, I(f ; gx) then can be used to160

represent the variability driven by forcing x. Consequently, � of x will then represent the161

fraction of variability driven by forcing x relative to total variability.162

� =
I(f ; gx)

H(f)
(1)

As this fraction is a fraction of bits of information entropy explained by external forcing163

versus bits of information entropy explained by internal and external processes, it does not164

equal numerically to the ratios of variance in other studies (Llovel et al., 2018). Nonetheless,165

it monotonically increases from 0 to 1 as more and more of the signal is explained by external166

forcing. It is also noteworthy that this calculation was done by combining all members of full167

forcing ensemble into a single vector (f), and by generating multiple copies of the ensemble168
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mean in a single vector (gx) so that the length of f and gx would match. More complex169

methods to compare all ensemble members against each other (Watanabe, 1960) have proven170

too expensive computationally to be tractable in this type of application (Chen, 2024).171

2.2.3 Pseudoproxy reconstruction172

To better understand and quantify the advantage of a multiproxy record over a sin-173

gle proxy record based PDV reconstruction, we carried out pseudoproxy reconstructions174

(Smerdon, 2012) of annual PDO and IPO indices. Pseudoproxies were generated using the175

CESM-LME and based on information from the HydroCoral2k database (Figure 1), and176

were then used to reconstruct annual PDO and IPO indices using a nested composite-plus-177

scaling approach (e.g., Wilson et al., 2006, 2010) (Text S3). Using the CESM-LME as a178

perfect model framework allows evaluations of the reconstructed PDV against the actual179

PDV in model. We used Shannon entropy, mutual information, and coe�cient of determi-180

nation to compare each reconstruction’s ability to capture the actual PDO and IPO in each181

nest, outside of the calibration period (1958-1994).182

Figure 1. Correlation patterns of PDO and IPO and locations of proxy records. Correlation

patterns between SST and (a) the PDO index and (b) the IPO index. The white circles represent

proxy record locations used for each index based reconstruction.
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3 Results183

There are broad scale similarities in the spatial pattern and the strength of � (fraction of184

externally forced decadal SST variability in total decadal SST variability) between forcings185

(Figure 2). The external forcing signal is most notable along the western boundary current186

in the Northern Hemisphere and o↵ Baja California, whereas the internal forcing is most187

dominant in the eastern equatorial Pacific. The forced signal is most prominent in full forcing188

simulations (Figure 2a), with notable signals in GHG and volcanic simulations (Figure 2b,e).189

However, the overall forced decadal SST signal is relatively weak compared to internally190

driven decadal SST variability. Indeed, the spatial patterns of decadal total variability,191

as denoted by Shannon entropy (Figure 2g-l), do not resemble spatial patterns that are192

associated with forced changes.193

The strength of � in the time domain is similar to results obtained from analyzing the194

spatial pattern of �. � is strongest in the full forcing simulation (⇠ 0.035 � 0.045) in both195

PDO and IPO. However, the relative strength between each forcing is dependent on the196

index used, with GHG and volcanic forcings have stronger roles for PDO, and GHG, LULC197

and orbital for IPO (Figure 3).198

The time dependent information theory based metric suggests external forcing plays a199

minor role in PDV throughout the last millennium. For both PDO and IPO, � is relatively200

low (< 0.1) throughout the last millennium (Figure 4). Interestingly, there are periods201

where the full forcing and volcanic forcing signal increases in PDO, but less so in IPO. The202

forced signal in the final 50 year window also does not appear to be anomalous relative to203

the last millennium.204

Incorporating multiple proxy records appears to improve the reconstruction skill of205

PDO/IPO compared to using a single proxy record (Figure 5). Both � and the coe�cient of206

determination (R2) are higher when multiple proxy records are incorporated into the proxy207

reconstruction.208

4 Discussion and Conclusion209

Our analysis based on CESM-LME suggests that the imprint of externally forced PDV210

is small relative to internally driven PDV. Typically, less than 5% of the Shannon entropy211

can be explained by mutual information. From an information theory perspective, this result212

can be understood as if files containing the record of PDV were optimally compressed, a213
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Figure 2. Spatial fingerprint of external forcing and total variability. Spatial patterns of the

fractional contribution of external forcing to total information (a-f) and the Shannon entropy (g-l)

at each grid point calculated using 13-year low pass filter SST data. Shown are results from (a,g)

full forcing, (b,h) GHG forcing, (c,i) LULC forcing, (d,j) orbital forcing, (e,k) volcanic forcing, and

(f,l) solar forcing simulations.
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Figure 3. Fraction of information driven by external forcing. The fraction of shared information

between ensemble average and all realizations relative to information from all realizations for (a)

PDO and (b) IPO indices. Shown are results from full forcing (teal), GHG forcing (brown), LULC

forcing (purple), orbital forcing (pink), solar forcing (green), and volcanic forcing (gold) simulations.

file containing fully-forced PDV responses (i.e., gfull) would be less than 1/20th the size of214

a file capturing PDV in any ensemble member’s history (i.e., f). This result is analogous215

to detection and attribution studies where regression coe�cients for forced changes based216

on regression fingerprinting methods are < 0.05 (Hegerl & Zwiers, 2011). Thus, internal217

variability is more pronounced everywhere in the Pacific basin, and also dominates the218

variability in indices that represent PDV. This agrees with previous last millennium studies219

that highlight the internal nature of PDV (Fleming & Anchukaitis, 2016; Zanchettin et al.,220

2013).221

Although the influences of GHG and volcanic forcings on PDV are notable, these forc-222

ings only play a minor role in driving PDV. Even though we observe a strengthened forced223

signal during periods with notable volcanic eruptions (Figure 4), they are weak compared to224

internal variability. Furthermore, the GHG and volcanic signals in the final 50 years of the225

simulation (1966-2005) are also not anomalous in the context of the last millennium. Hence,226

although GHG and volcanic forcings can influence PDV during the historical period (e.g.,227

L. Dong et al., 2014; Hua et al., 2018), our results suggest that they have only played a minor228

role in driving PDV in comparison to internal variability over the last millennium and have229

not become more important during the instrumental era. From the emergence of climate230
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Figure 4. Time dependent fraction of information driven by external forcing. 50 year sliding

window of the fraction of shared information between the ensemble average and all full forcing

realizations relative to information from all realizations in a) PDO and c) IPO. Box plots of the

di↵erent forcings’ � values in b) PDO and d) IPO. The black circles indicate the value at the final

50 year window (1966-2005).

Figure 5. PDV pseudoproxy reconstruction skill. a-b) r2 and c-d) � of PDO (left) and IPO

(right) pseudoproxy reconstructions using CESM-LME full forcing members. Green denotes mul-

tiproxy based reconstruction whereas red denotes single site based reconstruction skill. The thick

lines represent median values across 13 ensemble members.
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change signal perspective (Hawkins et al., 2020), our results represent small ‘signal-to-noise’231

values in PDV indices over 1966-2005 CE compared to the last millennium. Nonetheless,232

it is noteworthy that aerosols are not included in our analysis except through volcanism.233

Prior studies have indicated that aerosols could be partially responsible for PDV shifts in234

the historical period (Boo et al., 2015; Dittus et al., 2021). However, owing to the lack of235

constraints of aerosols prior to the historical period, aerosol forcings are kept constant in236

CESM-LME prior to 1850 CE (Otto-Bliesner et al., 2016). As a result, we are unable to237

quantify the role of non-volcanic aerosols in the context of the last millennium.238

The fact that PDV is primarily internally driven has significant implications on decadal239

climate predictions. Most importantly, our results imply that future improvements in pre-240

dicting PDV will be less dependent on how well we can model responses of the Pacific to241

the forcings analyzed in this study, but more on our understanding of dynamics that can242

generate PDV and models’ ability in representing processes in the Pacific Ocean. As such,243

future studies should focus on improving our knowledge about mechanisms that generate244

PDV. This implication is further corroborated by analyses on decadal prediction modeling245

experiments that suggest external forcing exerts a smaller influence in predicting Pacific246

than in the Atlantic (Yeager et al., 2018), and that initialization does not provide as much247

skill in the Pacific as in the Atlantic (Smith et al., 2019; Yeager et al., 2018).248

Lastly, our psuedoproxy reconstruction allows us to demonstrate the ability to use249

multiple marine based proxy records to reconstruct PDV. Prior studies either relied on250

terrestrial proxy records that were subject to influences of teleconnections or a small number251

of coral records from a localized region. By using the HydroCoral2k network, we show that252

there is a potential to improve PDV reconstructions using published proxy records within a253

pseudoproxy framework. This open avenues to improve our understanding of PDV changes254

and also calls for more high resolution marine based proxy records to be developed in the255

Pacific basin.256

Understanding the internal and external nature of PDV has significant implications on257

near term climate predictions. Our work has advanced our understanding about PDV by258

characterizing spatiotemporal fingerprints of internally driven and externally forced PDV259

and determining how well current marine based proxies can capture PDV. Although, our260

study is only based on one climate model, does not include an analysis on the impacts261

of aerosols, and employs a pseudoproxy framework, these results are helpful to the climate262
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prediction and paleoclimate communities as we continue to try to improve our understanding263

about decadal variability in the Pacific.264

Open Research265

CESM-LME data are available on www.earthsystemgrid.org. HydroCoral2k data is266

available at Walter et al. (2022). The code to calculate mutual information and Shannon267

entropy by our methods will be made available at the Brown Digital Repository with doi268

provided upon acceptance.269
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Text S1. PDO and TPI definitions

In this study, we relied on PDO and TPI to understand temporal characteristics of PDV.

PDO is a principal component based index that is commonly used to characterize decadal

SST variability in the north Pacific (Zhang et al., 1997), whereas TPI is an index that

does not rely on principal components and is used to characterize basin-wide decadal SST

variability (Henley et al., 2015). The PDO is defined as the first principal component of

north Pacific (20� 70� N; 110� 260� E) SST (Zhang et al., 1997), which was calculated

before any filtering beyond the removal of the seasonal cycle. To avoid contamination

from external forcings and allow direct comparison of the temporal characteristics of PDO

between di↵erent forcing experiments, we calculated PDO by first defining their empirical

orthogonal functions (EOFs) using the 850 CE pre-industrial simulation of CESM1.1, and

then projecting them onto forced simulations. The seasonal cycle and global mean SST

anomaly were removed from the preindustrial simulation latitudinally-weighted SST field

prior to calculation. For other simulations, the latitudinally-weighted SST field was mean

centered and the seasonal cycle was removed consistent with the preindustrial simulation

training. The TPI is an index that does not rely on principal components and is used to

characterize IPO (Henley et al., 2015). TPI is calculated by first removing the seasonal

cycle from the temperature field, then computing the di↵erence between temperature

average of the eastern equatorial Pacific and the average temperature of the northwest

and southwest Pacific (see Equation (1) in Henley et al. (2015) for details), and applying

a 13-year low pass filter to the timeseries.
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Text S2. Shannon Entropy and Mutual Information

We used Shannon Entropy and Mutual Information to quantify the relative role of internal

variability and external variability on total PDV variability. Shannon Entropy is defined

as (Shannon, 1948):

H =
NX

i=1

pi log2(1/pi) (1)

where H is the Shannon entropy with units of bits, and pi is the probability of the i
th

outcome. The factor log2(1/pi) measures the uncertainty shown by a variable or the

freedom that a variable has in visiting di↵erent combinations of the N bins.

Mutual Information is defined as (Shannon, 1948):

I =
NX

j=1

NX

i=1

pij log2

 
pij

pipj

!

(2)

where pij is the joint probability of ith outcome of x and j
th outcome of y. The marginal

probability of ith and j
th outcomes of x and y respectively are pi and pj. If the distributions

are statistically independent, then pij = pipj and I = 0. Alternatively, if x and y are

identical, then pij = pi = pj and I = H.

Because the probability distribution in Shannon entropy and mutual information is

estimated based on a binning procedure and the results are somewhat sensitive to binning

choices, it is important to use an objective criterion to avoid biasing the probability

estimates. Numerous techniques have been proposed to obtain optimal binning for precise

measurements of information entropy (Papana & Kugiumtzis, 2008). Here, we derived the

histogram for Shannon entropy based on equidistant partitioning and determined the bin

width based on the Freedman-Diaconis rule. The Freedman-Diaconis rule estimates the

bin width by assuming the underlying distribution is Gaussian (Freedman & Diaconis,
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1981). This bin width was then also used in marginal and joint probability distributions

when calculating mutual information. Although a previous study showed the information

theory metrics used here are sensitive to the uncertainty in bin width (Sane et al., 2024),

slight deviation of the bin width from the optimal binning estimate does not appreciably

change the ratio shown in Equation 1 in the main text, and the (Freedman & Diaconis,

1981) method seems to have the lowest bin uncertainty for geophysical applications (Chen,

2024). Until further research is done to improve the estimation of various entropies for

data in the climate sciences, histogram based estimation is a reasonable approximation

for practical purposes.

Text S3. Pseudoproxy Reconstruction

We carried out pseudoproxy reconstructions of annual PDO and IPO indices using the

CESM-LME full forcing simulations to understand and quantify the advantage of a mul-

tiproxy record over a single proxy record based PDV reconstruction. To do so, we first

identified coral records from the HydroCoral2k database (Walter et al., 2023) that are at

least 80 years long, have an annual or higher temporal resolution, and are located in the

North Pacific basin for PDO and the Pacific basin for IPO (Figure 1). Then, we isolated

the model grid cell nearest to the proxy records and truncated these data points based on

the temporal length of the proxy records. Since some proxy records do not have monthly

resolution, we averaged the monthly timeseries that were isolated into annual timeseries.

Afterwards, following prior pseudoproxy experiments, we added white noise (�=2) into

each annual timeseries to mimic characteristics of proxy records. Lastly, we used a nested
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composite-plus-scaling approach (e.g., Wilson et al., 2006, 2010) to reconstruct annual

PDO and annual IPO.
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