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Abstract8

We demonstrate the use of information theory metrics, Shannon entropy and mutual in-9

formation, for measuring internal and forced variability in general circulation coastal and10

global ocean models. These metrics have been applied on spatially and temporally av-11

eraged data. A combined metric reliably delineates intrinsic and extrinsic variability in12

a wider range of circumstances than previous approaches based on variance ratios that13

therefore assume Gaussian distributions. Shannon entropy and mutual information man-14

age correlated fields, apply to any distribution, and are insensitive to outliers and a change15

of units or scale. Di↵erent metrics are used to quantify internal vs forced variability in16

(1) idealized Gaussian and uniformly distributed data, (2) an initial condition ensem-17

ble of a realistic coastal ocean model (OSOM), (3) the GFDL-ESM2M climate model18

large ensemble. A metric based on information theory partly agrees with the traditional19

variance-based metric and identifies regions where non-linear correlations might exist.20

Mutual information and Shannon entropy are used to quantify the impact of di↵erent21

boundary forcings in a coastal ocean model ensemble. Information theory enables rank-22

ing the potential impacts of improving boundary and forcing conditions across multiple23

predicted variables with di↵erent dimensions. The climate model ensemble application24

shows how information theory metrics are robust even in a highly skewed probability dis-25

tribution (Arctic sea surface temperature) resulting from sharply non-linear behavior (freez-26

ing point).27

Plain Language Summary28

It is important in climate and environmental modeling to distinguish variability29

caused by external forces versus variability that arises within the system being modeled30

itself. In this paper, we study multiple runs of a coastal ocean model that are forced by31

tides, winds, and o↵shore and atmospheric conditions and multiple runs of climate model32

simulations that are forced by greenhouse gases and solar warming. We use information33

theory–a way to count the number of physical states visited by a system under study–34

to quantify the amount of variability in these models that results from the external forc-35

ing versus the amount from the internal chaotic variability. In this way, we can prior-36

itize improvements or inclusion of the di↵erent forcings based on how large the model37

response to them is.38
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1 Introduction39

In an ocean or climate model, it is pertinent to understand the cause of variabil-40

ity, as it leads to implications for predictability, prioritization of data collections for as-41

similation, and provides an understanding of the dynamics at play in di↵erent regions.42

In a coastal model, variability can arise from extrinsic factors such as wind forcing, so-43

lar and thermal forcing, tides, rivers, evaporation, and precipitation, or it can be due to44

internal chaos inherent to the governing fluid equations (Sane et al., 2021). In a climate45

model, modes of variability such as El Niño, the North Atlantic Oscillation, or the South-46

ern Annular Mode can conceal or delay the emergence of attributable anthropogenic cli-47

mate change signals (Milinski et al., 2019). In high-resolution ocean models, internal chaos48

or intrinsic variability can also be due to eddies (Leroux et al., 2018; Llovel et al., 2018).49

Accurately quantifying the relative contribution of external and internal factors can help50

to elucidate the causes responsible for observed variability in models, help to identify key51

observable metrics, and help quantify concepts such as the time of emergence of climate52

signals (Hawkins & Sutton, 2012).53

Numerous methods exist in the literature to quantify intrinsic and extrinsic vari-54

ability using models or observations (e.g., Frankcombe et al. (2015); Schurer et al. (2013);55

Y.-c. Liang et al. (2020)). Two types of model ensembles are common: initial condition56

ensembles (where the same model is used repeatedly with perturbed initial conditions57

and intrinsic variability occurs via chaos), and multi-model ensembles (where a variety58

of models di↵ering in numerics and parameterizations are used to simulate change un-59

der the same forcing–in this case “intrinsic” variability also includes aspects of model60

formulations). Initial condition ensembles are a set of simulations sharing the same forc-61

ing and the same governing equations and identical parameterizations, but they still di-62

verge from one another because slightly di↵erent initial conditions evolve into substan-63

tially di↵erent conditions later in the simulations due to intrinsic chaos–most geophys-64

ical fluid dynamics models and climate models are intrinsically chaotic. Most of the dis-65

cussion here will focus on initial condition ensembles, but the metrics proposed can be66

adapted to both types of ensembles.67

To help visualize variability, a generic idealized output from an ocean or atmospheric68

model is shown in Figure 1. Each color represents a di↵erent ensemble member, and the69

black solid line is the mean of those members. The solid black line is the signal due mainly70
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to extrinsic factors (aside from the limits of the finite ensemble size) and the spread of71

the model (schematized by the double-headed magenta arrow in Figure 1) can be con-72

sidered due to intrinsic variability or internal chaos.73

Figure 1. A sketch of a typical ocean or climate model output for an arbitrary variable. Each

ensemble is shown in a di↵erent color, and the mean of the ensemble is shown as a black line.

The ensemble mean can be considered to be the trend set by external forcings. The model spread

shown by the double-headed magenta arrow indicates the chaos of the model.

One method of quantifying intrinsic and extrinsic variability is to look at variances74

(second central statistical moment) of the model spread and the mean of the model (Leroux75

et al., 2018; Llovel et al., 2018; Waldman et al., 2018; Yettella et al., 2018). Variance is76

su�cient to constrain all metrics of variability about the mean when distributions are77

Gaussian and uncorrelated, but a single statistical moment usually measures only part78

of a more complex variability distribution. Many climatological variables show non-Gaussian79

distributions (e.g., Franzke et al. (2020)). In fact, generalized variance might be mislead-80

ing (e.g., Kowal (1971)). Quantification of variability should be robust to or have a known81

dependence on changes in the units of the quantity or the scale (e.g., changing temper-82

ature from Celsius to Fahrenheit or Kelvin). Comparative metrics, such as intrinsic vs.83

extrinsic variability, should not depend on these arbitrary choices of units at all.84

Variability, in essence, is a function of the number of occurrences or frequency of85

occurrence, often estimated by a histogram formed after appropriately binning the data,86

which then approximates a distribution with a discrete probability pi as a fraction over87

all states of the visited system. A histogram thus makes the estimated and visited num-88

ber of states discrete rather than continuous. Information entropy metrics measure vari-89

ability by taking into account the probability distribution of the binned data, drawing90

–4–



manuscript submitted to JGR: Oceans

on the concept from statistical mechanics of entropy in quantifying the number of mi-91

crostates that a variable can occupy. The fundamental measure in information theory92

is the Shannon entropy (Shannon, 1948) (a.k.a. the information entropy) that charac-93

terizes the amount of variability in a variable (Carcassi et al., 2021). Mutual informa-94

tion, another metric introduced by Shannon (1948), measures how much information a95

variable contains about another variable.96

Information theory is applied in signal processing, computer science, statistical me-97

chanics, quantum mechanics, etc. It is used to quantify the amount of information, dis-98

order, freedom, or lack of freedom (Brissaud, 2005). The application of these abstract99

notions to geophysical flows can have immense practical benefit when information en-100

tropy is interpreted as a measure of variability, as entropy does not rely on any partic-101

ular parametric probability distribution. Information theory metrics are not new to cli-102

mate sciences. They have been introduced in predictability studies, evaluating the skill103

of statistical models, as well as uncertainty studies (Leung & North, 1990; Schneider &104

Gri�es, 1999; Kleeman, 2002; DelSole & Tippett, 2007; Majda & Gershgorin, 2010; Steven-105

son et al., 2013) and recently in studying variability (Gomez, 2020), coastal predictabil-106

ity (Sane et al., 2021) and drivers of drought (Shin et al., 2023).107

In the two parts of this article, we bring well-established concepts of information108

theory to the particular application of measuring intrinsic and extrinsic variability for109

ensemble model runs within atmospheric and oceanographic modeling. We use Shannon110

entropy and mutual information and a particularly useful combination of the two. We111

indirectly employ conditional entropy, which depends on Shannon entropy and mutual112

information but is less intuitive so is not discussed in detail. Recent theoretical advances113

in understanding dynamical systems through the lens of information theory relate causal-114

ity analysis and information transfer (e.g., X. S. Liang (2014)). Although important, this115

theory has had few concrete applications. Even the basic information theory concepts116

(Shannon entropy and mutual information) have enjoyed only limited adoption by the117

oceanic and atmospheric community, primarily arising in predictability quantification118

(e.g., Sane et al. (2021)). We begin to bridge the gap with a pragmatic framework which119

can be easily replicated and improved upon, including causality analysis and the evo-120

lution of entropy within modeling systems like those studied here.121
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In Part 1, we apply this intrinsic vs. extrinsic metric to three sets of data: 1) Ide-122

alized Gaussian and uniformly distributed arrays with specified correlation, 2) Initial con-123

dition ensemble output of a regional coastal model (OSOM) (Sane et al., 2021) over July-124

August 2006 where most variables are not Gaussian, and 3) The GFDL-ESM2M Large125

Ensemble (Rodgers et al., 2015; Deser et al., 2020), an climate model initial condition126

ensemble hereby referred to as GFDL-LE. This large ensemble dataset contains histor-127

ical and future projection data following the RCP 8.5 scenario. All the GFDL-LE monthly128

mean data from 1950 to 2100 were used in the analysis.129

In Part 2, we use OSOM to demonstrate the use of Shannon entropy and mutual130

information to quantify the extrinsic forcing e↵ects of altered boundary forcing types.131

For example, is wind forcing dominant over river forcing, does using temporal averaged132

river runo↵ cause any appreciable changes in estuarine circulation, or does change in the133

wind product alter circulation? In coastal and estuarine systems, knowledge of which134

forcings are dominant helps prioritize data collection and refinement of the most impact-135

ful forcings.136

1.1 Information theory137

We introduce information theory concisely assuming the reader has no background138

knowledge–this section contains standard definitions. Consider a probability distribu-139

tion pi obtained after binning data into N bins. The user chooses the appropriate num-140

ber of bins or bin widths for the range of data. Shannon (1948) identified the average141

information content in N possible outcomes, equally or not equally likely, as given by:142

H =
NX

i=1

pi log2(1/pi), (1)

where H is the Shannon entropy with unit of bits when log is base 2 and pi is the prob-143

ability of the i
th outcome. The factor log2(1/pi) measures the information of the i

th out-144

come as proposed by Hartley (1928) and is also a measure of uncertainty (Cover, 1999),145

as it measures the information gained by knowing that the i
th outcome has happened146

or equivalently that the variable falls in the i
th bin. The term information does not mean147

knowledge, but it means the amount of uncertainty shown by a variable or the freedom148

that a variable has when visiting di↵erent combinations of the N bins. Shannon (1948)149

found Equation 1 to provide the average information (or uncertainty) for all events in150
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a record. For the entire set of elements, a highly probable event has less uncertainty as-151

sociated with it, and a low probability event has high uncertainty associated with it. Thus,152

the prefactor pi is used to weight the information over all possibilities. One way to in-153

terpret the need for the prefactor pi is that in repeated experiments the events with higher154

probability will occur more often; hence they should contribute more to the quantifica-155

tion of variability than infrequent events.156

Stone (2015) gives an intuitive way to understand Shannon entropy using a binary157

tree. A binary tree is a tree chart which starts with one node and splits into two branches158

at each node. At each node you can take a left or right turn to proceed, and if there are,159

say, 3 levels in the tree, then 8 (i.e. 23) outcomes or possible destinations exist. If a bi-160

nary tree has N equally probable outcomes, then the set of instructions required to reach161

the correct destination is given by h = (N)(1/N) log2 (N) = log2 (N). The uncertainty162

about reaching the correct destination will be removed by providing log2 (N) bits of in-163

formation. In other words, if the entropy is h then 2h states are possible.164

A second metric from Shannon (1948) which is also widely used is mutual infor-

mation. The mutual information between two signals x and y denoted by I(X;Y ) is (Cover,

1999)

I =
NX

j=1

NX

i=1

pij log2

✓
pij

pipj

◆
, (2)

where pij is the joint probability of ith outcome of x and j
th outcome of y. The marginal165

probability of ith and j
th outcomes of x and y respectively are pi and pj . The addend166

within the summations can be expanded to pij (log2 (pij)� log2 (pi)� log2 (pj)). I can167

be interpreted as the extra information in entropy of marginal distributions of x and y168

over the joint distribution. Mutual information is symmetric between x and y and is the169

measure of the amount of information they share. For example, if the distributions are170

statistically independent, then pij = pipj and thus I = 0. If the two records x and171

y are identical, then pij = pi = pj and I = H. I is the average reduction in uncer-172

tainty in x due to knowing y or vice versa and denotes how much information is trans-173

mitted between the two variables.174

In the context of ocean or climate modeling, entropy can be used to measure vari-175

ability in a model output or available data. This is in tandem with the interpretation176

of Shannon entropy in physical sciences as given in Carcassi et al. (2021). When calcu-177

lating the Shannon entropy, the primary concern is counting the possible states, e.g. the178
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various bins in a histogram, where the variable can go into while any assigned bin value179

or its dimensions are of lesser importance. Entropy metrics measure variability in bits180

(when the logarithm is of base 2), and hence changing the scale, e.g. switching from Cel-181

sius to Fahrenheit for temperature, does not change the value of variability (under equiv-182

alent binning). Mutual information and entropy are both dimensionally agnostic. They183

are also not sensitive to outliers due to the weighting prefactor and can capture nonlin-184

ear interactions (Watanabe, 1960; Correa & Lindstrom, 2013) and discontinuous distri-185

butions, including states visited intermittently. We will present the e↵ect of correlation186

and outliers by examples of idealized random vectors.187

The following methods and results sections are divided into the two parts of the188

overall objective of the paper. Parts A of both sections relate to evaluating intrinsic and189

extrinsic variability in ensemble models. Parts B describe the usage of Shannon entropy190

and mutual information on coastal regional modeling data to understand and compare191

the e↵ects of using di↵erent boundary conditions.192

2 Methods193

2.1 Part A: Intrinsic and Extrinsic Variability for Ensemble Data194

Analysis begins on each grid point on the ocean surface or ocean bottom. Let a vari-

able in the ensemble be given by f(n, t, x, y) where f is the variable, n denotes the in-

dex of the ensemble member and goes from 1 to N , t is the time index and goes from

t1 to tM , x, y represents the spatial grid point at the surface or bottom. The total num-

ber of members of the ensemble is N and each member has M time steps. At a partic-

ular grid point f(n, t, x, y) is f(n, t). To obtain the signal due to extrinsic forcings, the

“di↵erencing” approach (Frankcombe et al., 2015) has been followed to estimate the forced

response. This approach involves averaging the members of the ensemble to derive en-

semble mean. The ensemble mean is given by the following:

g(t) =
1

N

n=NX

n=1

f(n, t) (3)

g(t) is a single time-varying signal for each grid point obtained by averaging across the

ensemble members. There are potential problems with assuming that the ensemble mean

represents extrinsic variability only, such as if models are di↵erently sensitive to the forc-

ing signal based on the model’s equilibrium sensitivity, as elaborated in Frankcombe et

al. (2015) and Johnson et al. (2023). For a first-order approximation, we will assume the
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ensemble mean is the best estimate of the forced response. Once g(t) is obtained, the

intrinsic variability can be estimated by subtracting the ensemble mean g(t) from each

ensemble member. The ensemble signal, forced response, and intrinsic variability are then

related by:

f(n, t) = g(t) + ⌘(n, t), (4)

where ⌘(n, t) is the intrinsic variability or noise that di↵ers from one ensemble member195

to another. Note that the above decomposition takes place at each grid point. In Fig-196

ure 1a, f(n, t) are shown by multi-colored ensemble members. g(t) is shown by a thick197

black line. As seen in Figure 1b, g(t) has a probability distribution shown in gray and198

subsequently has the first, second and possibly important higher statistical moments. The199

gray density histogram shows variability due to extrinsic factors, and the pink density200

histogram shows total variability given by extrinsic and intrinsic factors.201

2.1.1 Evaluating entropies202

The ensemble simulation data has been used without detrending to evaluate g(t)203

and ⌘(n, t). Detrending will remove some nonstationarity from the data, but will also204

remove some part of the extrinsic variability. Our aim is not to determine the forced re-205

sponse but to estimate the degree of variability contributed by the forced response (ex-206

trinsic response) and the intrinsic variability originating from the intrinsic chaos. Met-207

rics have been calculated at each grid point by treating them independently.208

Usually we are limited in the number of ensemble members due to computational209

costs, so we concatenate into a jugaad in order to use all the ensemble members at once210

to evaluate information entropies. All the ensemble members given by f(n, t) are rear-211

ranged into a single row vector f as:212

f = [f(1, t1), f(1, t2), ...f(1, tM ), f(2, t1), f(2, t2), .....f(N � 1, tM ), f(N, t1), ....f(N, tM )] ,

(5)

and g is the row vector obtained by arranging N copies of g(t) in the following fashion:213

g = [g(t1), g(t2), ...g(tM ),| {z }
1

g(t1), g(t2), ...g(tM ),| {z }
2

... g(t1), g(t2), ...g(tM )| {z }
N

] (6)

–9–



manuscript submitted to JGR: Oceans

This enables wide sampling and obtains an accurate probability distribution for f (as-214

suming approximate stationarity, or enforcing stationarity by detrending), and allows215

g to be of the same size as f and having the same probability distribution as that of g(t).216

The information statistics we get at each grid point are time-invariant, since the com-217

plete time series is considered. It is the user’s choice to choose either the complete time218

series or a section of it for analysis. We have chosen the whole time series because this219

is a su�cient demonstration of the value of information theory metrics. A time-evolving220

analysis raises additional issues about causality and the shifting probabilities distribu-221

tions of climate states that are not the focus here (X. S. Liang, 2013; DelSole & Tippett,222

2018). By using the whole time series, we treat all variability as drawn from the same223

distribution and seek only to associate internal (associated with each ensemble member)224

and external (associated with the ensemble mean) sources of variability following Leroux225

et al. (2018). The time series f and g are both expressed as row vectors of the same size,226

N ⇥ M . This step is crucial, as vectors having the same number of elements are nec-227

essary to evaluate joint probability distribution. This enables us to calculate the mutual228

information between f and g.229

Calculating the Shannon entropy of f and the mutual information between f and230

g is a di�cult task that necessitates careful consideration. Optimal binning for precise231

measurement of information entropies is a research topic in itself, and various techniques232

have been proposed, such as equidistant partitioning, equiprobable partitioning, k near-233

est neighbor, usage of B-spline curves for binning to name a few (Hacine-Gharbi et al.,234

2012; Kowalski et al., 2012; Knuth, 2019). A comprehensive review of these methods can235

be found in Papana and Kugiumtzis (2008). Although the histogram binning technique236

is one of the most commonly used techniques (for example Campuzano et al. (2018); Potha-237

pakula et al. (2019); Shin et al. (2023)), it introduces uncertainty. There are several tech-238

niques to estimate this uncertainty, such as the one proposed in Knuth et al. (2005). In239

this article, we use histograms with equidistant partitioning where constant optimal bin240

widths are determined using the Freedman-Diaconis rule (Freedman & Diaconis, 1981;241

Knuth, 2019) at each grid point to get a discrete probability distribution. The same bin242

width was used for the marginal and joint probability distributions. Two approaches were243

used to estimate the sensitivity of the metric to binning: varying the bin width around244

the optimal value and bootstrapping over the ensemble members. The metrics were found245

to be more sensitive to changes in the bin widths than to bootstrapping. Therefore, to246
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estimate uncertainty, if the width of the bin was found to be �w, then it was varied from247

0.5�w to 1.5�w to obtain a reasonable estimate of uncertainty. Sweeping across the num-248

ber of bins was performed also in (Sane et al., 2021) to get an estimate of predictabil-249

ity time-scale.250

2.1.2 Information theory based metric251

Using f and g, we propose the following metric �, which has the same intent as met-

rics in (Leroux et al., 2018) to quantify the fraction of variability that is intrinsic, i.e.,

the typical amount that is unique to an ensemble member or statistical instance, but un-

like (Leroux et al., 2018) this metric is built from standard information theory quanti-

ties:

� = 1� I(f ; g)

H(f)
. (7)

H(f) is the Shannon entropy of f , and I(f ; g) is mutual information between f and g.252

I(f ; g) calculates the contribution of extrinsic signal g to the whole ensemble. H(f) is253

the total variability in the ensemble output which is the result of extrinsic and intrin-254

sic factors. The metric � gives ratio of intrinsic variability to total variability. When f !255

g, then I(f ; g) ! H(f) = H(g) from (2). This makes � = 0 when there is no intrin-256

sic variability or chaos. When intrinsic chaos fully dominates the ensemble output, i.e.257

f and g are fully decorrelated, then I(f ; g) = 0 yielding � = 1. We see that � satis-258

fies the extremes of zero noise and total chaos.259

Related quantities appear in other applications. The quantity I(f ; g)/H(f) is de-260

fined as “uncertainty coe�cient” (Eshima et al., 2020). It is the ratio of entropy of f ex-261

plained by g. H(f) and I(f ; g) are related through conditional entropy by H(f) = I(f ; g)+262

H(f |g) (Cover, 1999). H(f |g) is the conditional entropy H(X|Y ) =
P

p(x|y) log2 p(x|y)263

(Cover, 1999). It is not necessary to calculate the conditional entropy to arrive at �. H(X|Y )264

gives the average uncertainty about the value of f after g is known, or just the uncer-265

tainty in f that is not attributed to g but is attributed to ⌘. Hence H(f)�I(f ; g) es-266

timates variability due to intrinsic chaos and � gives the fraction of the variability due267

to intrinsic chaos.268

I(f ; g) takes into account any correlation or information shared between f and g.269

This is vital because even though the spread of the model ⌘ is treated similarly to the270

noise added to the mean signal, it might be that the spread of the model depends on the271
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mean signal. A simple example is that if the model spread is relative (e.g., 10% of the272

mean signal, or multiplicative noise), rather than absolute (e.g., 2 units, or additive noise),273

then there is information about the model spread contained in the ensemble mean sig-274

nal. The nonlinear and chaotic nature of fluids often leads the mean flow to amplify the275

chaotic signal (e.g., eddies) and thereby result in altered variability statistics that can276

be represented as multiplicative noise.277

Returning to the binary tree analogy, I(f ; g) would be the set of instructions sent278

by a source to reach one among 2H(f) possible destinations in the presence of noise hav-279

ing H(f |g) entropy. To capture the entropy in the noisy binary tree, to each of the 2I(f ;g)280

micro-state possibilities, noise
�
2H(f |g)� gets multiplied and the relation becomes 2H(f) =281

2I(f ;g)2H(f |g). Another analog of a component of the climate system is a noisy commu-282

nication channel as given in Leung and North (1990), where the governing equations of283

ocean (atmosphere) modeling are taken to communicate from forcing to response. The284

extrinsic forcings are inputs to the channel, the intrinsic chaos is the noise created be-285

cause of channel’s inherent mechanisms, while the outputs are the ensemble members.286

A noiseless channel will give � as zero, and a completely noisy channel where the out-287

put is independent of the input will give � as 1.288

A seemingly enticing and simpler alternative is � = 1� H(g)
H(f) , i.e. just the di↵er-289

ence between the entropy of the ensemble and the mean entropy as a ratio with the en-290

tropy of the ensemble. However, this formulation is incorrect because H(g) does not quan-291

tify the contribution of extrinsic factors to the variability in the ensemble, it only quan-292

tifies the variability of the mean. Relatedly, H(f)�H(g) does not correctly manage the293

mutual information between the ensemble members and their mean in estimating intrin-294

sic variability.295

Another alternative was proposed by (Gomez, 2020): using Shannon entropy di-296

rectly as a measure of intrinsic variability. They propose using Shannon entropy of model297

spread ⌘(n, t) at each time step normalized by the logarithm of the number of bins uti-298

lized. Their metric has a lower limit of 0 and an upper limit of 1, where 0 denotes zero299

noise and hence zero intrinsic variability and 1 denotes complete intrinsic variability. Again,300

this metric is similar to � in building upon information theory, but � takes into account301

the variability of the ensemble mean, the correlations between the ensemble mean and302

the intrinsic variability, and it is time invariant. A time-dependent version of � can be303
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made using running time windows instead of the whole time series, but care in quanti-304

fying or controlling for lack of stationarity is needed in this interpretation (DelSole &305

Tippett, 2018). The Gomez (2020) metric uses the spread of the ensemble members sim-306

ilar to measuring Shannon entropy, whereas � utilizes, in an abstract sense, the set of307

instructions required to choose a destination for the particular variable among the pos-308

sible model states.309

2.1.3 Variance based metric310

A variance based metric as given in (Leroux et al., 2018) has been utilized to com-

pare with our information-based metric. The variance-based metric measures intrinsic

and extrinsic variability using the second moment, variance. It involves calculation of

the following terms �g and �⌘ given by:

�
2
g
=

1

M

t=MX

t=1

⇣
g(t)� g(t)

⌘2
, (8)

�
2
⌘
(t) =

1

N

NX

n=1

⌘(n, t)2, (9)

where the overbar denotes the temporal averaging. Total variability has been estimated

as
⇣
�
2
g
+ �2

⌘
(t)

⌘1/2
. The forced variability �g is equivalent to I(f ; g), and the total vari-

ability
⇣
�
2
g
+ �2

⌘
(t)

⌘1/2
is equivalent to H(f). Therefore, � is compared to �std given by

�std =

⇣
�2
⌘
(t)

⌘1/2

⇣
�2
g
+ �2

⌘
(t)

⌘1/2
(10)

311

2.2 Part B: Information Entropy and Boundary Forcing312

2.2.1 Impact of changes in boundary forcings in coastal models313

Here instead of using the new metric �, we use its components– Shannon entropy314

and mutual information–individually to compare variability between di↵erent simula-315

tions. Quantifying di↵erences because of modifications in the extrinsic forcings may be316

required for coastal applications where systems vary predominantly due to external forc-317

ings. For these forcing significance experiments, OSOM was run after modifying the ex-318

ternal forcings (Table 1). OSOM is forced by tides, river runo↵, atmospheric winds, air-319

sea fluxes, etc. All model details can be found in Sane et al. (2021). For this compar-320
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Figure 2. Flattening process for comparing two-dimensional fields using Shannon entropy

and mutual information. As the flattened arrays x1, x2, ... and y1, y2... may not have linear de-

pendence on each other, using linear dependence measures such as Pearson’s correlation might

produce incorrect results. Mutual information measures nonlinear correlations and hence cap-

tures all linear and nonlinear dependence.

ison, we quantify the e↵ects of altering forcing on 4 modeled variables: sea surface tem-321

perature and salinity, and bottom temperature and salinity. One control and four altered322

forcing sets were utilized,323

1. (Control) Full atmospheric forcing using the North American Mesoscale (NAM)324

analyses, a data-assimilating, high resolution (12 km) meteorological simulation325

(https://www.ncei.noaa.gov/data/north-american-mesoscale-model/access/326

historical/analysis) denoted FF. FF stands for full forcing.327

2. Full set of atmospheric forcing, but using the winds of the Northeast Coastal Ocean328

Forecast System (NECOFS) winds (Beardsley & Chen, 2014) instead of NAM, de-329

noted as NECOFS.330

3. River flows are replaced with their monthly averaged flow, other forcing as in FF331

4. River flows set to zero, other forcing as in FF.332

5. Wind forcing set to zero, other forcing as in FF.333
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These forcing sets have been tabulated in Table 1. The aim is to quantify the e↵ect on334

total variability by removing or altering one of many processes that might contribute.335

Forcing Set Wind forcing River forcing

FF NAM As Observed

NECOFS NECOFS As Observed

MR NAM Time-averaged rivers

ZR NAM Zero river input

ZW Zero winds As Observed
Table 1. Di↵erent types of forcing combinations were used to test their e↵ect on variability.

FF stands for full forcing: winds, tides, rivers, etc. For more details, see Sane et al. (2021). MR:

mean rives; ZR: zero rivers; ZW: zero wind.

To evaluate spatial Shannon entropy, the spatial output at a particular instant in336

time was rearranged into a row vector by a process called flattening, as shown in Fig-337

ure 2. Land mask points were removed. A variable x, which is a two-dimensional vari-338

able, was converted to one-dimensional array (flattened) by concatenation. Shannon en-339

tropy was found for the flattened variable at each time step to obtain a time-varying en-340

tropy of each surface or bottom variable.341

Mutual information was applied between the flattened row vectors. Our focus is342

on a pragmatic approach to using information theory for relative comparisons among sim-343

ulations, rather than an equation for the evolution of Shannon entropy and mutual in-344

formation with respect to time (see X. S. Liang and Kleeman (2005)). For example, if345

mutual information on surface salinity between FF and MR is higher than between FF346

and ZR, this implies that the penalty for using time-averaged river runo↵ is not as se-347

vere as using zero river runo↵. The replacement of FF with MR will give more similar348

results to FF than replacing FF with ZR will. We can interpret this to indicate that small349

errors in river runo↵ flow rates will not cause appreciable changes to surface salinity while350

using zero rivers will strongly impact the solution.351
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3 Results352

3.1 Part A: Intrinsic and Extrinsic Variability Results for Ensemble Data353

3.1.1 Idealized Gaussian Arrays354

We test our metric �, equation (7) on synthetic data consisting of idealized arrays355

of Gaussian data: N (0, 1). For a normal Gaussian distribution Shannon entropy depends1356

only on the standard deviation �. The variability in a Gaussian distribution can be in-357

creased or decreased by changing its standard deviation. Our goal is to compare � and358

�std. We set out our numerical experiment as follows: we create 10 arrays, each having359

10,000 elements drawn from a Gaussian distribution. Any two arrays from those 10 have360

a prescribed correlation coe�cient between 0 and 1.361

Thus, the 10 arrays are linearly correlated with a specified correlation coe�cient.362

These 10 arrays represent ensemble members from climate simulations. The mean of 10363

members gives us the synthetic forced variability signal as would be determined from the364

model output; averaging over the 10 ensemble members reduces the contribution from365

uncorrelated variability and rea�rms the covarying component into the forced variabil-366

ity. We apply � and �std on this synthetic ensemble by varying the prescribed correla-367

tion coe�cient from 0 to 1. Figure 3 shows that, as expected, both metrics increase as368

the correlation decreases, that is, as internal variability dominates forced. Both metrics369

behave similarly when correlation decreases, i.e., noise increases, but � is more sensitive370

as correlation tends to 1. This distinction is due to the logarithmic nature of Shannon371

entropy for Gaussian distributions–in essence, information measured in bits is not pro-372

portional to distance measured between distributions in terms of summed variance–in373

the examples following the consequences of this distinction will become clearer. Criti-374

cally, both functions are monotonic with correlation; however, relative comparisons (more375

intrinsic fraction in one region vs. a di↵erent region) are preserved.376

1
H = log2 2⇡e�

2
is the Shannon entropy of a Gaussian distribution when probability density is con-

tinuous with � as standard deviation. The Shannon entropy of a discrete probability distribution di↵ers,

which is inconsequential here, but the reader is encouraged to read Jaynes (1962). Throughout this arti-

cle, discretely sampled and binned probability distributions are obtained directly from the data without

any further parameterization
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A second related experiment was derived from the first and is also shown in Fig-377

ure 3: adding outliers outside of the Gaussian distribution. 50 out of 10000 elements of378

each individual member were artificially corrupted (values were set to a constant value379

of 5) to test the sensitivity of both metrics. Figure 3 shows that � is insensitive to out-380

liers while �std is not. � is not sensitive because outliers occur less frequently and there-381

fore do not greatly a↵ect the probability distribution, especially with the prefactor in382

(1) and (2). Hence, information theory metrics are robust in comparison to using stan-383

dard deviation (or variance). If the outliers (extreme events) occur at higher frequen-384

cies, information metrics will naturally start sensing them even if they are discontinu-385

ous from the typical conditions (e.g., multimodal distributions). The above process was386

repeated for 100 ensemble members, each sampled from Gaussian distributions. Increas-387

ing the number of ensemble members does not change the result qualitatively for both388

experiments. The results for a Gaussian ensemble of 10 members are shown in Figure 3389

a and 100 members in Figure 3 b.390

Additionally, a set of experiments was carried out using uniformly distributed data391

U(�1, 1). The prescribed correlated vectors were created using the procedure described392

in Demirtas (2014). 10 and 100 ensemble members were created and � and �std were found393

between the members and their mean. The results are shown in Figure 3 c, d, respec-394

tively. The outlier had a value of 1.5. In all cases, � was less sensitive to outliers than395

�std.396

3.1.2 Regional coastal model output397

In this section we show the results of applying � and �std on realistic simulation398

data from the Ocean State Ocean Model, hereafter OSOM (Sane et al., 2021). OSOM399

uses the Regional Ocean Modeling System (ROMS) (Shchepetkin & McWilliams, 2005)400

to model Narragansett Bay and the surrounding coastal oceanic regions and waterways.401

OSOM’s primary purpose is to understand and predictive modeling and forecasting of402

the estuarine state and climate of this Rhode Island body. Sane et al. (2021) gives more403

details about the model.404

Using OSOM, an ensemble of simulations has been performed using perturbed ini-405

tial (ocean) conditions under the same atmospheric and tidal forcing for the months July406

and August of 2006. This ensemble consists of 10 members. Data during the first pre-407
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dictability window (20 days) where results are still linked directly to the initial condi-408

tions have been ignored and the remaining simulation has been used to examine vari-409

ability within the “climate projection” of the model beyond when forecasts or predic-410

tions that rely deterministically on initial conditions are possible. During this phase the411

di↵erent ensemble members visit di↵erent possible futures within the envelope of the pro-412

jected “climate” (see the related application of information theory to assess predictabil-413

ity in Sane et al. (2021)). The modeled temperature and salinity at each grid point typ-414

ically do not follow Gaussian distributions as the skewness and kurtosis each grid point415

shown in Figure 4 for salinity and temperature of the sea surface and bottom for the Nar-416

ragansett Bay region. The horizontal axis shows skewness and excess kurtosis, which are417

the third and fourth statistical moments, respectively, normalized by powers of the stan-418

dard deviation to dimensionless ratio, and in the case of excess kurtosis a constant value419

of 3 is subtracted. For Gaussian distributions, both skewness and excess kurtosis should420

be close to zero. The vertical axis denotes the number of occurrences at a grid point. Ob-421

serve that the majority of grid point values are away from zero and thus these variables422

are considerably non-Gaussian in OSOM. Therefore, the variance method in Equation (10)423

is at a disadvantage because the prevalence of higher statistical moments implies that424

the variance does not contain a complete description of the variability. The information425

theory metric (7) is suitable for such data as it takes into account higher moments and426

does not rely on Gaussian distributions.427

Figure 7 shows the ratio of intrinsic variability to total variability applied at ev-428

ery point in the OSOM grid. �std is displayed on left whereas � is shown in the center429

for comparison. The uncertainty in � has been plotted in the third column in Figure 7.430

The features highlighted by both metrics are qualitatively di↵erent. The contribution431

of intrinsic chaos to total variability is more uniform using the � metric than using �std.432

The intrinsic chaos displayed using �std might be misleading because the probability dis-433

tributions are non-Gaussian. Furthermore, where the � metric highlights internal vari-434

ability, it tends to agree in similar dynamical locations–all river mouths show high sur-435

face salinity intrinsic variability. While surface temperature intrinsic variability is higher436

in more open regions of the Bay, where eddies form intermittently due to varying topog-437

raphy. Also note that the ranges are quite di↵erent between � and �std, but this is to438

be expected from the di↵erent rate of increase with correlation seen in Figure 3.439
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3.1.3 Earth System Model Large Ensemble440

A complementary experiment was performed using � to evaluate internal versus441

forced variability in global climate simulation output for the RCP8.5 climate change sce-442

nario using the GFDL-LE model (randomly selected among the models compared). The443

40 members of the ensemble were utilized. The variability of sea surface temperature (Fig-444

ures 5) and sea surface salinity (Figures 6) were estimated using both � and �std.445

Note in particular the Arctic sea surface temperatures in Figure 5, which have a446

highly skewed and excessive kurtosis distribution due to the freezing point of seawater.447

The standard metric (�std) considers this region to be among the most intrinsically vari-448

able in the world, while the information theory metric considers it as a region of mid-449

dling intrinsic variability–much lower than the equatorial regions where El Nino variabil-450

ity is profound. This region is also subject to intermittent and drastic swings in salin-451

ity as sea ice forms and melts, but note that the standard metric indicates low salinity452

variability while the information theory metric ranks it as high in Figure 6. It is clear453

that a Gaussian metric should not be applied to the Arctic due to the skewness and ex-454

cess kurtosis, and in this case the inference is opposite using the standard and informa-455

tion theory metrics. In the equatorial Pacific, where Gaussian statistics are more reli-456

able, the two metrics agree that internal variability is high.457

A less drastic failure occurs from the modest excess kurtosis in extratropical tem-458

peratures and in a few isolated regions in surface salinity. These regions are also non-459

Gaussian but are also not heavily skewed (i.e., they are more long-tailed and intermit-460

tent than Gaussian). These regions di↵er in the relative estimation of intrinsic versus461

total variability. It is also the case that the � metric is closer to one in most regions than462

�std, which is expected when the correlation coe�cients are low in Figure 3.463

3.2 Part B: Information Entropy and Boundary Forcing Results464

3.2.1 Impact due to changes in boundary conditions in coastal models:465

We show the results of the coastal model analysis under di↵erent forcing in Fig-466

ures 8 and 9, under the same region as shown in Figure 7. The entropy has been plot-467

ted with respect to time as some variability occurs. In Figure 8, Shannon entropy is plot-468

ted for spatial quantities. For example, for surface salinity, all surface values have been469
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considered to find the Shannon entropy using the flattening approach. If Shannon en-470

tropy is more or less equal for two forcings, it implies that they similarly a↵ect variabil-471

ity. Both winds and rivers seem to have similar e↵ects in this regard. However, Figure 9472

displays mutual information which should be compared for two pairs of forcings. Greater473

mutual information implies that the two pairs share more bits of information, suggest-474

ing that one of the forcing in that pair can be replaced with the other without signif-475

icantly a↵ecting variability. For temperature dependence on wind in Figure 8, we see that476

only NAM and NECOFS, our two realistic forcing conditions, share much mutual infor-477

mation. Figure 9 shows zeroing the rivers strongly reduces the salinity variability. Futher-478

more, in terms of salinity impact, full rivers and mean rivers share information as do NAM479

and NECOFS wind forcing.480

4 Discussion481

Our numerical experiments performed using � on idealized Gaussian arrays show482

that � is monotonic and decreases as the linear correlation coe�cient increases. Thus,483

apart from the qualitative di↵erences the new metric finds when the data are non-Gaussian,484

the ranges of intrinsic versus total variability are quite di↵erent between � and �std. This485

is to be expected from the di↵erent rates of increase with correlation seen in Figure 3.486

The traditional metric (�std) falls approximately linearly as the correlation coe�cient487

increases, so that a correlation coe�cient of 0.5 gives a �std just above 0.5. The new met-488

ric � agrees with �std that a correlation of 0 implies � = 1, and a correlation of 1 im-489

plies � = 0, but for a correlation of 0.5 it is closer to � = 0.9. Only very near the cor-490

relation coe�cients of 1 does � fall below 0.5. If a roughly linear dependence on the cor-491

relation coe�cient is desired, � can be raised to a power–�3 resembles �std and �
6 re-492

sembles the correlation coe�cient. These higher powers do not lose the ability to apply493

to non-Gaussian data nor become non-monotonic, but they will lose their interpretation494

as a ratio of bits of information entropy, and instead reflect ratios of bits cubed of in-495

formation entropy, etc. An alternative is to take �std raised to a di↵erent power: �1/3
std

496

is roughly similar to �.497

The uncertainty associated with binning is small–typically much less than the vari-498

ability across the domain and the metrics are thus not overly sensitive to the binning499

procedure. The exploration of alternative strategies to evaluate entropies will remain a500

topic of future investigation and may further improve precision.501

–20–



manuscript submitted to JGR: Oceans

As can be seen in Figures 7, 5, and 6, information theory metrics show di↵erent502

patterns compared to variance metrics. Information theory metrics, especially mutual503

information, account for all non-linear shared information between the ensemble mem-504

bers and the mean including linear correlation, and this is one reason for the di↵erences.505

We have argued that non-Gaussian statistics are another (which is not wholly indepen-506

dent of non-linear shared relationships). There are likely other aspects of di↵erences be-507

tween these metrics, but the management of these two expected aspects of geophysical508

fluids–nonlinear relationships and non-Gaussian distributions—-justifies analyzing the509

data with nonparametric metrics in addition to second moment statistics.510

For the regional coastal model OSOM, forcings di↵er in shared information and as511

to how they a↵ect di↵erent variables. As might be expected, river runo↵ is more impor-512

tant for salinity than for temperature. However, for July to August, replacing rivers with513

the monthly mean river flow gives nearly the same result (in terms of variability) as fully514

time-varying rivers. Similarly, averaging the river runo↵ gives a similar e↵ect for salin-515

ity compared to giving the observed river runo↵ in the simulations; see Figure 8. This516

might be due to lower river runo↵ during summer leading to lower variability in the flow517

rate hence averaging river runo↵ might be appropriate. We cannot conclude if there will518

be a similar e↵ect in winter because the higher river runo↵ lead to larger variability and519

replacing river runo↵ with its mean might be unfruitful. Temperature is less sensitive520

to any of the forcing alterations, because although temperature and salinity are passive521

tracers, they have di↵erent sources and sinks. Switching the wind product from NAM522

to NECOFS does not have a significant e↵ect on the sources or sinks of temperature or523

salinity, but switching the wind o↵ definitely a↵ects the parameters by eliminating wind-524

driven mixing altogether. Figure 9 shows that zero-wind (ZW) simulations are markedly525

di↵erent from the rest in terms of mutual information (i.e. they do not covary), although526

very similar in terms of amount of spatial variability (Shannon entropy, Figure 8), be-527

cause even without winds tides, fluxes, and rivers still vary. The zero-river case tends528

to eliminate both variability and mutual information (ZR).529

If we were to prioritize improvements based on Shannon entropy and mutual in-530

formation, note that the two highest mutual information cases are where NAM is sub-531

stituted with NECOFS and where mean rivers are substituted for varying rivers. The532

first observation is important from a forecast perspective, because it means that we can-533

not easily tell the di↵erence between di↵erent wind products, although something rather534
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than zero winds should be used if the estuary needs to be forecast for the full 20 day pre-535

dictability range (weather forecasts are reliable for only about 7 days in this region). Sim-536

ilarly, knowing that substituting the mean of the rivers for fully varying rivers has lit-537

tle impact implies that rivers can be fixed in time for forecasts beyond where they might538

be predicted based on expected weather and precipitation. Finally, despite the fact that539

Narragansett Bay is a dominantly tidally mixed estuary, among the sources of overall540

variability (i.e. sources of information entropy) considered, preserving an inflow of fresh541

water is key, even though that inflow can be steady. Winds do not appreciably increase542

information entropy of the Bay, but they are an important source of forced co-variation,543

and so are important for predictions but do not raise the overall level of variability.544

5 Conclusion545

We showed usage of information theory metrics to determine contribution of in-546

trinsic chaos and external variability to total variability in ensemble model simulations.547

The metric consists of Shannon entropy and mutual information and is non-parametric548

compared to variance. We have applied metrics on idealized Gaussian arrays, as well as549

realistic coastal ocean and global climate models. We conclude that:550

1. The information theory metric is more reliable when outliers are present, because551

outliers get assigned less probability and because Gaussian distributions have a552

di�cult time approximating long-tailed (i.e., outlier-prone) distributions.553

2. The information theory metric is more reliable when variability is non-Gaussian554

because it is based on nonparametric measures of the probability distributions and555

captures nonlinear correlations.556

3. The new information theory metric varies monotonically with ensemble member557

to ensemble mean correlation, but is quantified in fractions of bits required to cap-558

ture internal variability versus bits required to capture total variability.559

4. The use of the information theory ratio metric in a coastal ocean model ensem-560

ble and a climate model ensemble qualitatively changes the focus to regions that561

were previously erroneously labeled as having high or low internal variability.562

5. The use of Shannon entropy and mutual information can quickly focus attention563

on which forcing choices cause the most variability and need attention as their sub-564

stitutions significantly a↵ect the outcomes. These conclusions can be drawn re-565
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gardless of the fact that the dimensions of wind, rivers, salinity, and temperature566

have no specified unit conversion factors.567

6. In these ensemble simulations, the coastal ensemble had a much smaller intrin-568

sic (chaotic) proportion of its total variability in comparison to the climate ensem-569

ble which had more intrinsic variability (weather, climate oscillations, etc.) as a570

proportion of its total. Importantly, the resolution of the models helps determine571

the proportion of intrinsic variability, so such comparisons are model-specific: a572

higher-resolution coastal model might well have a larger intrinsic fraction than a573

coarser climate model.574

Other applications of these and similar information theory metrics are likely to be re-575

vealing of new behavior and sensitivity of models.576

Appendix A Open Research577

We have made the code and data available at https://doi.org/10.5281/zenodo578

.7992844579
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Figure 3. Information theory metric of intrinsic vs. extrinsic variability � as a function of

the correlation coe�cient in idealized Gaussian correlated arrays (a and b) and idealized uni-

formly distributed arrays (c and d). The horizontal axis is the correlation coe�cient between the

mean member and ensemble members. The vertical axis shows the information theory metric

� from (7) and the traditional metric �std from Equation (10). A second related experiment is

also shown adding (50 out of 10,000) “corrupted” outliers to each individual member. The in-

formation theory metric � does not change for these outliers, which shows its robustness, while

�std is highly sensitive. The results are similar for Gaussian distribution members and uniformly

distributed members. � is more sensitive around linear correlation of 1. This is due to the loga-

rithmic nature of �.

–28–



manuscript submitted to JGR: Oceans

Figure 4. Grid point-wise skewness and excess kurtosis for OSOM output. Neither are close

to zero, e.g., within (-0.5, 0.5), suggesting that the temperature and salinity data distribution is

non-Gaussian.
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Figure 5. Intrinsic to total variability for sea surface temperature using (a, b) �std and (c, d)

�. (e, f) Uncertainty range in � found by sweeping across the bin width as explained in the text.

We can see a di↵erence in the magnitude and pattern of the intrinsic to total variability around

the Arctic region. Di↵erence in other regions such as Mediterranean sea and Pacific equator is

also visible.
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Figure 6. Intrinsic to total variability for sea surface salinity using (a, b) �std and (c, d) �. (e,

f) Uncertainty range in � by sweeping across the bin width as explained in the text. We can see

a di↵erence in the magnitude and pattern of the intrinsic to total variability around the Arctic

region. Di↵erence in other regions such as Mediterranean sea and Pacific equator is also visible
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Figure 7. Metrics � vs �std for the OSOM output. Both metrics show di↵erent contributions

of intrinsic variability to total variability. � is more uniform in the domain than �std. Right pan-

els show the uncertainty in � due to binning choices. The color maps for � and �std are di↵erent

to highlight their di↵erent ranges. �std for bottom temperature (not shown) has a maximum

value of 5%, and the pattern is almost uniform except at the river sources where the values are

on the lower side (less than 1%).
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Figure 8. Shannon entropy applied to temperature and salinity. Replacing fully time-varying

rivers with monthly mean river flow gives almost the same result for salinity. The same is true

by replacing the wind product with a di↵erent one. Setting the river to zero a↵ects salinity, but

not temperature. Winds are important in terms of variability, but di↵erent wind products do not

noticeably alter variability.
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Figure 9. Mutual information applied to simulations from di↵erent forcings. Higher mutual

information implies higher similarity in terms of variability. For example, NAM-NECOFS val-

ues are higher than NAM-ZW implying that NAM and NECOFS are significantly di↵erent than

having no wind.
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Table S1. Location of points for comparing uncertainity due to binning and bootstrapping

Point Longitude Latitude
A 75.5 � E 29.5 � S
B 175.5 E 80.5 � N
C 175.5 E 10.5 � N
D 175.5 E 45.5 � N
E 39.5 W 59.5 � S

a Footnote text here.

Figure S1. Points where uncertainty due to binning and bootstrapping is compared.
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Figure S2. Uncertainty ranges due to binning and bootstrapping. Binning (red) has more

uncertainty than bootstrapping (blue).
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Figure S3. Metrics � vs �std for OSOM output. Both metrics show di↵erent contribution of

intrinsic variability to total variability. � is more uniform throughout the domain than �std. Col-

ormaps for � and �std are di↵erent to highlight the di↵erent ranges each of them have.Uncertainty

range is calculated using sweeping the bin width from 50% to 150% of the bin width as estimated

using F-D rule.

June 5, 2023, 6:21pm



: X - 5

Figure S4. Top: Intrinsic to total variability percentage for sea surface temperature. Uncer-

tainty range is calculated using sweeping the bin width from 50% to 150% of the bin width as

estimated using F-D rule.
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Figure S5. Top: Intrinsic to total variability percentage for sea surface salinity. Uncertainty

range is calculated using sweeping the bin width from 50% to 150% of the bin width as estimated

using F-D rule.
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Figure S6. Shannon entropy applied to temperature and salinity. Replacing fully time

varying rivers with monthly-mean river flow gives almost the same result for salinity. Same is

true by replacing wind product with a di↵erent one. Rivers set to zero a↵ects salinity but not

temperature. Winds are important in terms of variability but di↵erent wind products do not

noticeably alter variability. Uncertainty range is calculated using sweeping the bins from 50 to

800. The median is assumed to be the best estimate.
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Figure S7. Mutual information applied to simulations from di↵erent forcings. Higher mutual

information implies higher similarity in terms of variability. For example NAM-NECOFS values

are higher than NAM-ZW implying that NAM and NECOFS are significantly di↵erent than

having no wind. Uncertainty range is calculated using sweeping the bins from 50 to 800. The

median is assumed to be the best estimate.
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