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We examine the SI effects and Bachman’s SI Parameterization in a two-fronts LES simulation.
The domain, governed by periodic horizontal temperature profile, consists of a Geostrophic
Stable front and a Geostrophic Unstable front. In the study, we find that the Bachman’s SI
Parameterization is not good enough to reproduce the Reynolds stress and the SI turbulent
buoyancy transport in the LES simulation. The Geostrophic Shear Production by the SI eddy
effects are not a linear vertical profile but a two stage equation. On the first stage from the
surface to a depth about −15 m, the GSP increases linearly. On the second stage from the
depth about −15 m to the mixing layer bottom, the GSP decreases linearly. We also find that
the Reynolds stress in this simulation consists of not only SI turbulence beyond the horizontal
resolution of 10 m, but also averaged LES subgrid friction. The LES subgrid friction is as
important as SI turbulent momentum transport in the SI active grids.

1 Introduction

The state-of-art regional models are suffering problems in simulating geostrophic unstable fronts
(Smith, Hamlington, and Fox-Kemper 2016; Leif N. Thomas et al. 2013), where wind stress and
evaporation moves colder water onto the warmer, and the strong fronts in the climate system are
often identified with geostrophic instabilities, including Gulf Stream, Kuroshio and Antarctic Cir-
cumpolar Current where wind-driven Ekman transport carries colder water onto the warmer water.
For the failure of models, a potential explanation is models’ incapacity of simulating Symmetric
Instabilities (SI) (B. Hoskins 2015; B. J. Hoskins 1974). SI is a kind of instability by negative
potential vorticity (PV) on Northern Hemisphere (or positive in Southern Hemisphere), with turbu-
lences scaling from 10 m to 100 m (Stone 1966), of which the models are incapable to resolve.

In recent years, Bachman, Scott et al. (2015) built an experimental SI parameterization in MITgcm,
based on theories (Stone 1966) and idealized Large Eddy Simulation (LES) (John R. Taylor and
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Ferrari 2010; L. N. Thomas and J. R. Taylor 2010; Leif N. Thomas et al. 2013). However,
these studies relies upon an ideal ocean front assuming a constant horizontal temperature gradient
and negligible vertical advection, while the assumption could unrealistic for the real ocean front.
This study examines the parameterization in a more realistic ocean scenario(Smith, Hamlington,
and Fox-Kemper 2016) in which the Symmetric Instabilities is not generated by the background
temperature gradient.

Two models will be used in this study, LES and MITgcm. The LES models geostrophic fluid with
a resolution of 10 m, a resolution enough to resolve SI turbulence on grids. MITgcm is simulated
with a horizontal resolution 100 m, a resolution beyond the SI turbulence but capable of detecting
negative PV. MITgcm will be ran with and without Bachman’s SI Parameterization to examine
the performance of the parameterization. By comparing between LES and parameterized MITgcm
results, we find that the SI parameterization is not mature enough for direct deployment in regional
ocean studies at this stage.

The paper is planned as follows: Section 2 will introduce the Bachman’s SI Parameterization.
Section 3 will compare the MITgcm simulations with the LES truth simulation, for examining how
well the Bachman’s SI parameterization works. Section 4 analyses the Reynolds stress and GSP in
the LES simulation, to understand the difference between the Bachman’s parameterized SI and the
true SI effect of the LES. Section 5 is the conclusion.

2 An Introduction of Bachman SI Parameterization

Here we will provide a brief introduction for Bachman’s SI Parameterization.(Bachman, Scott et al.
2015)

The parameterization solves three problems, where SI is activated, how the turbulence viscosity
(Reynolds Stress) is changed by SI, how the turbulence diffusivity is changed by SI.

2.1 Where SI is turned on

SI is the turbulences formed by the negative Ertel’s PV (B. Hoskins 2015), therefore, in Bachman’s
SI Parameterization, the SI turbulences is active on the regions of negative PV formation.

MITgcm is governed by

∂uh
∂ t

+u ·∇uh + f k×uh = bk−∇ϕ +F (1)

∂b
∂ t

+u ·∇b =−D (2)

∇ ·u = 0 (3)
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, where F = −∂ j

⟨
u′juh

⟩
is the Reynolds friction, D = −Q+ ∂ j

⟨
u′jb

⟩
indicates the buoyancy

change due to the boundary forcing Q and the diffusion ⟨w′b′⟩, and uh is the horizontal velocity.

From the basic governing equations, we could have the Ertel’s Potential Vorticity, calculated by
the mean flow, and its tendency by (Shown in Appendix A, or see Leif N. Thomas 2005; Marshall
and Nurser 1992)

q = ωa ·∇b (4)
∂q
∂ t

=−∇(qu)−∇J (5)

J =−ωaD+(∇b)×F) (6)

, where q is the Ertel’s Potential Vorticity (PV), and ωa is the absolute vorticity.

Because SI is associated with negative PV, we choose the SI influenced regions by negative surface
PV forcing J(z = 0) < 0. In (L. N. Thomas and J. R. Taylor 2010), it is found that, at least in an
idealized ocean front, the negative PV forcing is generated with geostrophic instability where

BE +Bo ≈−HJ(z = 0)> 0 (7)

, where H is the scaling of mixing layer depth, BE = −∂ugτ is the surface Ekman Buoyancy
Transport (EBF), Bo is the surface buoyancy fluxes due to evaporation, precipitation, heating and
cooling.

Therefore, in Bachman’s SI Parameterization, we choose the SI active region as regions of BE +
Bo > 0

2.2 What is the viscosity and diffusion of the SI mixing layer

In SI active region, the surface buoyancy fluxes and the surface wind-stress are transported down-
ward by two different layers(John R. Taylor and Ferrari 2010). The surface buoyancy fluxes trans-
ports downward by a non-local convection until the convective layer hconv, and the momentum is
transport downward deeper until the Richardson mixing layer hri.

The Richardson number Ri = −1 determines a condition that q = 0.(Leif N. Thomas et al. 2013)
The Richardson layer depth is determined by where the Richardson number is −1 that

∆zbhri = (∆zu)2 (8)

, where ∆zx = x(z)− x(z = 0) is the difference between the surface and the depth.

The non-local buoyancy convection reduces the whole water column beyond the convective layer
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until the stratification is unchanged between the surface and the depth:

1
hconv

∫ 0

hconv

dz
∂b
∂ t

=
1

hri −hconv

∫ hconv

hri

dz
∂b
∂ t

(9)

∂b
∂ t

∫ 0

hconv

dz
∂b
∂ t

= Bo −
∫ 0

hconv

dz∇(ub) (10)∫ hconv

hri

dz
∂b
∂ t

=−
∫ hconv

hri

dz∇(ub) (11)

Based on the analysis in the idealized front (John R. Taylor and Ferrari 2010), the convective layer
hconv could be approximated by(

hconv

hri

)4

− c3
(

1− hconv

hri

)3

(x)2 = 0 (12)

The viscosity is parameterized by Geostrophic Shear Production (GSP) PG, and GSP, as argued in
John R. Taylor and Ferrari 2010, could be approximated by a linear function thorough z, that

PG +w′b′ = (BE +Bo)
z

hri
(13)⟨

w′b′
⟩

nonlocal = Bo
z

hconv
(14)

, where PG = −⟨u′w′⟩∂ug/∂ z is GSP, ⟨w′b′⟩nonlocal is the non-local turbulence vertical buoyancy
transport.

Then the viscosity as a scalar ν and the Reynolds friction in SI effects are parameterized as

ν =
PG

(∂ug/∂ z) · (∂u/∂ z)
(15)

⟨
u′w′⟩=−ν

∂u
∂ z

(16)

And the diffusivity is parameterized with a regressed Prantl number (Bachman, Scott et al. 2015)

κ =
2ν

1+10max(0,Rib)0.8 (17)

Rib =
∂b/∂ z

(∂ug/∂ z)2 (18)

⟨
w′b′

⟩
=−κ

∂b
∂ z

+Bo
z

hconv
(19)

, where the Rib is the Geostrophic Balanced Richardson number, ⟨w′b′⟩ the turbulence vertical
buoyancy includes the local and non-local parts.
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2.3 A quick lookup

In the Bachman’s SI Parameterization, the SI effects are active on regions under the forced geostrophic
instability as in Eqn. 7. On these regions, the SI effects are parameterized by two layers, Richard-
son mixing layer (Eqn. 8) as the whole mixing layer and the convective mixing layer (Eqn. 12)
for the non-local turbulence vertical buoyancy transport. The viscosity and the Reynolds’ friction
stress, based on GSP as in Eqn. 16, are parameterized as in Eqn. 15 and Eqn. 16. The vertical
turbulence buoyancy transport and the diffusivity are parameterized as in Eqn. 17 and Eqn. 19.

3 Performance of the Previous Parameterization

3.1 Experiment Setup

Bachman’s SI Parameterization has been shown well in simple ideal front scenarios (Bachman,
Scott et al. 2015). Generally, in the parameterization studies, the domain is periodic and small,
no bigger than 1km× 1km horizontally, and SI exists everywhere by a background horizontal
temperature gradient. However, the background temperature gradient and a small domain could be
unrealistic for the real SI fronts. To simulate the SI effect and examine the SI Parameterization in
a more realistic scenario, we want to simulate a domain that

• The domain should be big enough to capture the front structures.

• The domain should be small enough that the LES is capable to simulate with 10 m horizontal
resolution.

• The front is not sustained by a pre-given background gradient, and the horizontal buoyancy
gradient is permitted to change vertically by oceanic processes.

Therefore, the two front periodic domain studied by Hamlington et al. (2014) are used for a more
realistic Symmetric Instability simulation. The two fronts domain simulation have been analysed
for the interaction between SI and Langmuir turbulence (Hamlington et al. 2014; Suzuki et al.
2016) and for tracers diffusion in SI fronts(Smith, Hamlington, and Fox-Kemper 2016). In this
study, we will run 3 simulations to examine Bachman’s SI Parameterization

• a LES simulation (LES truth), in which SI effects are perfectly resolved. We will use ‘LES
truth’ to represent this simulation later in this paper.

• a MITgcm simulation without Bachman’s SI Parameterization (MITgcm KPP), in which SI
effects are not represented. We will use ‘MITgcm KPP’ to represent this simulation later in
this paper.
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• a MITgcm simulation with Bachman’s SI Parameterization (MITgcm SI), in which SI ef-
fects are parameterized based on Bachman, Scott et al. 2015. We will use ‘MITgcm SI’ to
represent this simulation later in this paper.

The experiment parameters and setup are already shown by Hamlington et al. (2014) and Smith,
Hamlington, and Fox-Kemper (2016). The LES and MITgcm simulations model the spindown
of two fronts forced by wind-stress without surface heat fluxes. No salinity gradient exists, so
the buoyancy is subject to the temperature profile. Fig. 1 shows the temperature initialization
and the wind-stress forcing. The temperature is initialized with a geostrophic stable front and
a geostrophic unstable front, two fronts are as deep as 60 m, a typical mixing layer depth. The
wind-stress are constant over time with a 30◦ aligned to the front, and the amplitude of wind-
stress is τ0 = 0.025Nm−2. The More details and other parameters could be seen in the Table 1 of
Hamlington et al. 2014.

As being periodic, the domain includes a geostrophic stable front and a geostrophic unstable front.
The geostrophic unstable front is forced by a positive Ekman Buoyancy Transport, and therefore is
the regime of Forced Symmetric Instability as in the Bachman’s Parameterization. The geostrophic
unstable front is located around y = 12.5km by the initialization, and moves southward by Ekman
flow.

3.2 Comparison and Results

We compare the three simulations at the twelfth day after initialization. The initialization is almost
homogeneous along the x-axis (aligning the front), so the difference along the x-axis is small
and not interesting. Therefore, we will use the surface variabilities, x-averaged variabilities and
horizontal averaged variabilities to examine the fronts.

In interpolating the LES results onto the MITgcm grids, a 12 hours average is applied for eliminat-
ing the inertia waves of the LES. Variables of u, v, θ , b is interpolated by the volume average of
each MITgcm grid. The momentum and buoyancy fluxes like uw, wb and vertical velocity w are
interpolated by face average.

Fig. 2 shows the Surface PV and the Surface Sea Temperature (SST) of the three simulations at
twelfth day. All three simulations reveals a turbulent geostrophic unstable front around 5km <
y < 10km, and a geostrophic stable front around 15km < y < 20km. Negative PV is seen at
geostrophic unstable fronts in all three simulations. However, the negative PV in LES truth is
stronger and more widespread in y-axis than negative PV in MITgcm KPP and MITgcm SI, and
the geostrophic unstable front is more turbulent in LES truth than in MITgcm KPP and MITgcm
SI. Each of the three simulations shows a geostrophic unstable front and a geostrophic stable front,
but the LES has a more turbulent and stronger geostrophic unstable front.

Fig. 3 shows the vertical PV and the vertical temperature difference with x-averaging, and the ver-
tical temperature difference is the potential temperature difference by the SST and the temperature
in the depth. It shows that all three simulation have a similar PV mixed layer depth by a benchmark
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q(z) < qc = 8×10−10 s−3. However, in the first 20 m depth, the PV is distributed differently in
LES truth than in MITgcm KPP and MITgcm SI. In the geostrophic unstable front, the negative PV
of LES truth is constrained in the layer z >−10m, while negative PV of the MITgcm simulations
can be as deep as −20 m. Compared with the PV of MITgcm simulations, the negative PV of the
LES truth is distributed more uniformly along y-axis in the geostrophic unstable front.

The vertical temperature profile is also different between LES truth and MITgcm simulations. The
MITgcm simulations overestimate the vertical stratification at the boundary layer z >−60m. By a
benchmark ∆θ > ∆θc = 2×10−3 K, the temperature mixed layer of the LES truth are about −20 m
at the geostrophic unstable front, while the mixed layer of MITgcm KPP or MITgcm SI is about
−40 m at the geostrophic unstable front.

Fig. 4 compares the vertical profile of GSP PG = −⟨u′w′⟩∂zug and the eddy vertical buoyancy
transport w′b′ averaged in the SI regime defined by BE > 0.

Fig. 4a shows that the GSP is larger in MITgcm simulations than the LES truth, and the GSP are
similarly between MITgcm KPP and MITgcm SI. It shows that the SI Parameterization does not
have a strong effect on GSP.

Fig. 4b shows the ratio between GSP and EBF between three simulations. In both MITgcm KPP
(red line) and MITgcm SI (yellow line), the GSP-EBF ratio could be approximated by a linear
function over z like Bachman’s SI Parameterization, while the LES truth (blue line) shows a strange
vertical GSP profile. The GSP-EBF ratio (blue line in Fig. 4b) in LES truth increases to about 3
around first 15 m, and then dumps linearly to zero. The vertical GSP in the LES truth shows that
the GSP could be stronger than EBF in real SI effects, which is different from previous SI studies.
Therefore, we could come to two conclusions.

• As the GSP profiles in the MITgcm KPP and MITgcm SI are similar, we could conclusion
that in this simulation the SI parameterization is not significantly different from the KPP
parameterization in calculating the Reynolds friction stress.

• The GSP profile in the LES truth could not be estimated by the vertical linear function as in
the Bachman’s parameterization.

Fig. 4c shows the w′b′ averaged on all SI active grids, and Fig. 4d shows the w′b′ per EBF on all
SI active grids. The vertical distribution of the w′b′ is different between the LES and MITgcm
simulations. Though the amplitudes of w′b′ are similar between three simulations, the w′b′ as
a response to EBF are different between LES and MITgcm simulations. In MITgcm KPP and
MITgcm SI, the w′b′ is much smaller than EBF, as the ratio varying between −0.2 and 0. On the
other hand, the w′b′ is comparable with EBF in LES truth, with the ratio varying between −1.0
and 0.2
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4 Diagnosing the LES results

In the comparison of the last section, we found that the LES truth differs from the MITgcm SI and
MITgcm KPP in PV, temperature, GSP and w′b′. In the LES simulation, the geostrophic unstable
front is more unstable, and the GSP vertical profile is different from the Bachman’s Parameteriza-
tion.

4.1 Geostrophic Instability and Symmetric Instability

As Sec. 2 shows, the Bachman’s SI Parameterization turns on SI parameterization where geostrophic
instability is active. This subsection would examine the overlap between the Symmetric Instability
(SI) and Geostrophic Instability (GI). Table 1 shows the percentage of grids in LES truth governed
by different instability at the twelfth day. It shows a good consistency between SI and GI that
most SI influenced grids are captured by the GI prediction, and most GI grids are influenced by SI.
Therefore, at least in this simulation, the Bachman’s SI parameterization works well on deciding
where the SI is active.

Instability Percentage
GI and SI 35.0 %
GI, no SI 5.0 %
SI, no GI 4.5 %
None 55.5 %
False Positiveness 12.5 %
False Negativeness 7.5 %

Table 1: Percentage of Grids governed by different instability; The Geostrophic Instability (GI)
grids are grids where a negative vertical stratification is generated by BE +BO > 0 as in Eqn. 7.
The Symmetric Instability (SI) grids are grids where the surface PV is negative. The False Posi-
tiveness is the possibility that falsely predict SI grids by positive GI. The False Negativeness is the
possibility that falsely predict no-SI grids by negative GI.

4.2 GSP Profile

Previous studies show that GSP is an important factor in diagnosing the SI effects. And when
the domain is periodic or the Rossby number is much smaller than 1, the Ekman and geostrophic
balance indicates that the Geostrophic Shear Production plays an important role in the Turbulent
Kinetic Energy (TKE).(John R. Taylor and Ferrari 2010) Previous studies find that the GSP in the
ideal ocean front scenario is approximately a linear function through z.

In the last section comparing LES and MITgcm simulations, we have found that, on the SI regime,
the GSP PG is not a vertical linear function as discussed in ideal ocean. Fig. 4a shows the GSP
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averaged by all SI regions, and how the Reynolds stress aligning or crossing the front contribute to
the total GSP. It shows that the GSP PG is mostly contributed by the friction align the front and the
temperature gradient across the front, a consistent result with analysis in previous studies (John R.
Taylor and Ferrari 2010). However, the GSP PG is not a vertical linear function, but two vertical
linear functions meeting about z =−10m where the maximum of PG occurs, as

PG =


BE +Pmax

G

z
h1

z > h1

Pmax
G

z−hri

h1 −hri
z > hri

(20)

, where BE is the EBF, Pmax
G is the GSP maximum at the depth about −10 m, and h1 is the depth of

GSP maximum, and hri is the Richardson mixing layer.

We also examine whether there is a reliable relationship between the EBF BE and the GSP max-
imum Pmax

G . Fig. 5a is a histogram between between the surface EBF and the maximum GSP on
every grid of the SI region, and it shows that grid-by-grid analysis is very noisy and difficult to
understand. We regroup the SI grids with levels of surface EBF, and analyses the relation between
GSP and EBF by bin-average in each EBF levels. We regroup the horizontal grids in the SI regime
to 100 bins in ascending order of the EBF, and calculate bin-averaged GSP vertical profile. Fig. 5b
shows the relationship between the EBF and GSP maximum (maximum by larger than 95 % GSP
in each vertical profile) after bin-average, which shows that Pmax

G = 3BE is an acceptable approxi-
mation.

Therefore, at least in this LES simulation by the twelfth day result, the GSP PG profile could be
estimated by

PG =


BE(1+3

z
h1

) z > h1

3BE
z−hri

h1 −hri
z > hri

(21)

, where BE is the EBF, h1 is the depth of the maximum GSP. The calculation of h1 is undecided,
and the scientific implication of the ratio Pmax

G /BE = 3 is not understood yet. It is unknown whether
the ratio is robust for other days during this simulation or for other simulations.

Then we examine the horizontal buoyancy gradient in the SI regions, which are assumed mostly
constant over depth by previous studies. Fig. 6 shows the horizontal buoyancy gradient could be
taken as a constant value in a layer above −40 m, a depth of typical convective mixing layer and
of buoyancy mixed layer. Below that layer, the horizontal buoyancy gradient change rapidly to
the opposite direction. The assumption of constant buoyancy gradient are consistent with the LES
truth.

4.3 Momentum Analysis

The GSP profile implies a SI eddy vertical momentum transport possibly leading to a stratified
Ekman flow. Fig. 7 shows the SI eddy vertical momentum transport, along with the momentum ad-
vection by the mean flow. The momentum advection is small compared to the SI eddy momentum
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transport, The overall momentum transport u′w′+uw in each direction increases from the surface
to a certain depth, and then decrease. The vertical gradient of u′w′+uw drives a stratified Ekman
velocity; the upper layer’s Ekman velocity direction is the opposite direction to the Ekman velocity
of the lower layer. However, the velocity in the LES simulation is not stratified.

Therefore, in the momentum budget, there must be some terms compensating the SI eddy turbulent
vertical momentum transport u′w′ so that the real velocity is not stratified. Here we try to break
down the horizontal velocity by the momentum budget according the Coriolis force. As the SI
turbulence scales from 10 m to 100 m horizontally, the Reynolds friction stress contributed from
turbulence under LES resolution is considered as a separate term not contributed by SI. The total
velocity could be understood by

u =
1
f

k× (∂tu+u ·∇u)︸ ︷︷ ︸
Inertia velocity

+ ug︸︷︷︸
Geostrophic Velocity

+
1
f

k×
⟨
∂1,2u′1,2u′⟩︸ ︷︷ ︸

SI Friction by Horizontal Transport u′hu′

+
1
f

k×
⟨
∂zu′w′∇

⟩
︸ ︷︷ ︸

SI Friction by Vertical Transport u′w′

+
1
f
×∂i

⟨
τi, j

⟩
︸ ︷︷ ︸

LES subgrid friction averaged to MITgcm grids

(22)

ug =
1
f

k×∇ϕ =
∫ z

bottom
dz1 f k×∇b (23)

(24)

To simplify the calculation, the LES subgrid friction part is calculated by the difference between
the overall velocity and other parts.

Fig. 8b and Fig. 8a show the decomposition of the velocity averaged on the SI regime. The
geostrophic velocity and the inertia velocity is small compared to the overall velocity. The ve-
locity is mostly governed by the Ekman velocity contributed by u′w′ and by LES subgrid friction.
However, different from previous studies, the Reynolds friction is not only contributed by SI ef-
fects, but also by LES subgrid friction averaged to MITgcm grids. The LES subgrid friction is not
negligible in calculating the Reynolds friction.

5 Shear Production

Considering the LES subgrid friction would brought an important difference in the TKE budget;
the shear production would include LES subgrid friction in the Shear Production, as shown in
Eqn. 36

Fig. 9 considers the Shear Production with and without considering LES subgrid friction on SI
active grids, compared with the SI turbulent GSP (blue line) and w′b′ (red line). It shows the GSP
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and w′b′ are negligible in TKE budget compared to the Shear Production. The Shear Production
with LES subgrid friction (green line) is much greater than the Shear Production only by the SI
turbulence (yellow line). Therefore, the LES subgrid friction would be important for TKE budget
analysis and for the parameterization scheme based on TKE budget.

6 Conclusion

We examine the Bachman’s SI Parameterization in a two ocean front domain. We find that the
Bachman’s SI Parameterization is not mature enough for studying the SI in regional ocean models.
The current SI parameterization could not represent the GSP and w′b′ in the LES simulation where
SI effects are resolved.

In the comparison between LES simulation and MITgcm with and without Bachman’s SI Param-
eterization. We find that the geostrophic unstable front is more turbulent in LES truth than the
MITgcm simulations, and the MITgcm simulations overestimates the vertical buoyancy stratifica-
tion. What is more, the GSP is not changed significantly by the SI parameterization, as the MITgcm
KPP without SI parameterization is similar with SI parameterization, a vertical linear GSP profile
thorough z.

On the other hand, the vertical GSP profile of SI regime in the LES simulation is quite different
from the Bachman’s SI parameterization. The GSP related to the turbulences between 10 m and
100 m increases linearly between surface and a depth −15 m, and then decreases linearly between
−15 m and the mixing layer bottom.

In this simulation, the baroclinic pressure gradient is small compared to the Reynolds stress and
the Coriolis force. The geostrophic velocity is negligible compared to the whole velocity. The
velocity is governed by the Ekman balance with Reynolds friction stress, but the Reynolds friction
stress consist of not only the SI turbulent vertical momentum transport u′w′ but also of the average
of the LES subgrid friction. The subgrid LES friction is as important as the SI turbulent advection
in the Reynolds stress, at least in this simulation.

More investigation about the TKE in this two front system is necessary. The linear GSP profile
of the Bachman’s Parameterization requires one 1-D conservative model that the fluxes inward
and outward the SI/GI front would cancelled out each other. However, in this simulation, the
flux inward and outward the SI/GI fronts are different. The inward flow are from a geostrophic
stable front with cool water and low turbulent kinetic energy, while the outward flow are from the
geostrophic unstable front with warm water and high turbulent kinetic energy. Therefore, the fluxes
components in the TKE budget would have an effect. The shear production, the proxy for calculat-
ing Reynolds stress in the parameterization, is not only influenced by the subgrid dissipation, but
also by the energy fluxes inward or outward the SI grids.
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Appendix A: From basic momentum equation to PV budget

The Ertel’s PV, calculated by the mean flow, is given by

q = ωa ·∇b (25)

, where absolute viscosity is denoted as ωa = f k+∇×u.

By Eqn. 1 and Eqn. 2, we would have the absolute viscosity and buoyancy governed by

dωa
d t

−ωa ·∇u = ∇× (bk)+∇×F (26)

∂b
∂ t

+u ·b = D (27)

∇u = 0 (28)

Then we could get the governing equation of q by

∂q
∂ t

=
∂ωa
∂ t

·∇b+ωa ·∇
∂b
∂ t

(29)

u ·∇q = (u ·ωa) ·∇b+ωa(u ·∇) ·∇b
= (u ·ωa) ·∇b+(ωa ·∇)(u ·∇b)− ((ωa ·∇)u) ·∇b (30)

dq
d t

=
dωa
d t

·∇b+ωa ·∇
db
d t

+(ωa ·∇u) ·∇b

= (∇×bk+∇×F)∇b+ωa ·∇D
=−∇(−ωaD+(∇b)×F) (31)

However, it is the PV by the mean flow, not exactly the mean PV. The budget of mean PV includes
u′q′, a 3rd order momentum uneasy for calculation with the output of MITgcm.

Appendix B: the TKE budget in SI Fronts

The Turbulent Kinetic Energy ET KE =
⟨
(u′2 + v′2 +w′2)/2

⟩
is the kinetic energy contributed by

the turbulent velocity u′, and the turbulent velocity u′ is governed by the LES equations

(
∂u+u′

∂ t
+(u+u′) ·∇

)
(u+u′)+ f k× (u+u′) =−∇(ϕ +ϕ ′)+∂iτSGS

i j ej +(b+b′)k (32)(
∂u+u′

∂ t
+(u+u′) ·∇

)
(b+b′) = Q (33)

∇ ·u = 0 (34)
∇ ·u′ = 0 (35)
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, where u+u′ and b+b′ is the full velocity and full buoyancy on each LES grid, the u and b is the
mean velocity and mean buoyancy as the averaged onto the MITgcm grid, u′ and b′ is the turbulent
part by subtracting the u and b, τSGS is the sub-grid LES friction. Then we will have the TKE
budget as

∂ET KE

∂ t
=−∇(u′ϕ ′)−∇(uET KE)+

⟨
−u′iu

′
j + τSGS

i j

⟩
∂ jui +w′b′−

⟨
∇
(
u′ (u′ ·u′))⟩+⟨

∂iu′jτSGS
i j

⟩
(36)

Sometimes the previous study consider that the pressure gradient part −∇(u′ϕ ′) is the Geostrophic
Production with periodic domain and with Ekman Balance.(John R. Taylor and Ferrari 2010) How-
ever, in this study, the Symmetric Unstable front is not periodic.
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Figure 1: The Temperature Initialization and Wind-Stress for MITgcm and LES simulations, cited
from (Hamlington et al. 2014)
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5 10 15
x/(km)

5

10

15

y
/(

km
)

7

5

3

1

1

3

5

7
1e 11

(c) MITgcm SI Surface PV
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(e) MITgcm KPP SST
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(f) MITgcm SI SST

Figure 2: The Surface PV and the Surface Sea Temperature (SST) at the 12th day of LES truth
simulation, MITgcm KPP simulation and MITgcm SI simulation. The SST distribution is plotted
with subtracting the horizonatal averaged temperature. The upper figures are: 2a the Surface PV
of LES truth simulation, 2b the Surface PV of MITgcm KPP simulation, 2c the Surface PV of
MITgcm SI simulation. The lower figures are: 3f the SST of LES truth simulation, 2e the SST of
MITgcm KPP simulation, 2f the SST of MITgcm SI simulation
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(a) LES truth Vertical PV
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(b) MITgcm KPP Vertical PV
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(c) MITgcm SI Vertical PV
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(d) LES truth ∆θ = θ(y,0) −
θ(y,z).
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(e) MITgcm KPP ∆θ
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(f) MITgcm SI ∆θ

Figure 3: The vertical distribution of PV and of the vertical temperature difference by the SST.
The upper figures are x-axis averaged (aligning front averaged) PV, and the lower figures are x-
axis averaged vertical temperature difference to the surface. The vertical temperature difference
are the potential temperature difference by ∆θ = θ(y,0)−θ(y,z).
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Figure 4: Vertical Profile GSP and w′b′ averaged in the SI regimes where EBF is positive. The
upper figures are: 4a GSP and 4b GSP per EBF. The lower figures are 4c w′b′, w′b′ per EBF.
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Figure 5: GSP Parameters estimation. It is seen that two parameters in GSP vertical profile could
be approximated by Surface GSP PG = BE , where BE is Ekman Buoyancy Transport, and the
Maximum GSP in the tipping point could be approximated by PE

max = 3BE . EBF and GSP are
calculated by averaging on and only on SI active grids.
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Figure 6: The Horizontal Buoyancy Gradient, ∂xb and ∂yb, averaged on all SI grids that EBF is
positive BE > 0
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Figure 7: The vertical momentum fluxes averaged on all SI regions, including the SI turbulent
part and mean flow advection. ⟨u′w′⟩ and ⟨v′w′⟩, averaged on SI active grids that EBF is positive
BE > 0
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Figure 8: Based on Eqn. 22, the velocity averaged on SI regions are decomposed by the geostrophic
velocity, inertia velocity, Ekman velocities by the SI turbulent vertical momentum transport, and
by LES subgrid friction. Fig. 8a analyses the x-direction momentum equation and decompose the
v velocity, and Fig. 8b analyses the y-direction momentum equation and decompose the u velocity,
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Figure 9: Shear Production Parts in TKE budget: The GSP by SI eddy effects −u′w′ · ∂zug, the
SI eddy vertical buoyancy transport w′b′, The Shear Production by SI eddy −u′w′ ·∂zu, The Shear
Production by SI eddy and LES subgrid friction (−u′w′+ τSGS

z )∂zu. All terms are calculated by
averaging on all SI active grids
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